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This paper modifies the exact Dynamic Programming algo-
rithm developed by the author for the single vehicle many-to-
many immediate request Dial-A-Ride problem to solve the
problem where each customer has specified upper and lower
bounds for his pickup and delivery times and where the objec-
tive is to minimize the time needed to service all customers. The
major difference between the two algorithms is the substitution
of backward recursion with forward recursion. The new algo-
rithm requires the same computational effort as the old one
(0(N?*3") for N customers) and is able to recognize infeasible
problem instances.

Although single-vehicle Dial-A-Ride systems do not exist in practice,
single-vehicle Dial-A-Ride algorithms can be used as subroutines in large
scale multivehicle Dial-A-Ride environments. It is mainly for this reason
that one’s ability to “solve” the single-vehicle Dial-A-Ride problem is
considered important. In fact, the single-vehicle version of this problem
has received significant attention from many researchers over the past
few years (for instance, References [1-4] among others).

In Reference [1], this author developed an exact algorithm, based on
Dynamic Programming, for solving the single vehicle many-to-many,
immediate-request Dial-A-Ride problem. In that version of the problem,
N customers were assumed to request immediate (as-soon-as-possible)
service from N distinct origins to N distinct destinations, by a single
vehicle whose initial location is known (e.g. a depot). A generalized
objective function was examined, consisting of a weighted combination of
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the time to service all customers and the total degree of dissatisfaction
experienced by customers while waiting for service. This dissatisfaction
was assumed to be a linear function of each customer’s waiting and riding
times. In addition, vehicle capacity constraints and special priority rules
were included, and both “static” and “dynamic” versions of the problem
were examined.

Some other important variants of this problem exist and have been
examined by various researchers. Perhaps the most important of those
variants is what is known as the “Dial-A-Ride problem with desired
pickup or delivery times,” in which each customer specifies a desired time
for his pickup and/or delivery. The work of BoDIN AND SEXTON?®
exemplifies efforts in this area. In addition, BAKER'®! and CHRISTOFIDES,
MinGozz1 aND ToTH!! have examined Traveling-Salesman-type vehicle
routing problems with time windows on delivery times.

This short technical note will show that a procedure similar to the one
developed in Reference [1] can be applied without difficulty to the single-
vehicle many-to-many Dial-A-Ride problem where each customer has
specified time windows for both his pickup and his delivery times.
Specifically, we shall assume that customer i(i =1, - .. , N) has requested
to be picked up within the interval {a,, 4.], and, delivered within the
interval [¢;, d;]. This formulation is more general than the one presented
by some other researchers (e.g. References [2, 5]) who typically impose
either desired pickup time or desired delivery time constraints. Of course,
it is understood that setting a, or ¢, equal to —, and/or b; or d, equal to
+ o can make any one (or all) of the above four time constraints
superfluous. In this paper, we shall assume that a;, b;, ¢; and d, are known
inputs for each customer i, inputs which satisfy certain necessary condi-
tions to avoid trivial infeasibility. In general, those conditions will not be
also sufficient for feasibility, but the procedure that will be developed
will be able to identify infeasible problem instances, should those in-
stances occur.

1. FEASIBILITY CONSIDERATIONS

For N customers, there will be 2N + 1 points to be visited by the vehicle.
Let L be an index representing the point which is currently visited by the
vehicle. By convention, L = 0 means the vehicle is at the starting point,
1 < L = N means the vehicle picks up customer L and N + 1 < L <2N
means the vehicle delivers customer L — N. It is assumed that the “direct
time” matrix [£(x, y)] with x and y between 0 and 2N is known and not
necessarily symmetric. The convention for x, y is the same with the one
introduced for L above.
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The problem will be trivially infeasible if any one of the conditions
listed below is true:

(a) a. > b, for some customer i
(b) ¢, > d; for some customer i
(¢) d,— a, < t(i, i + N) for some customer i.

For instance, the third condition states that if the difference between
the latest delivery time (d,) and the earliest pickup time (a,) of any
customer (i) is less than the direct time from the origin (i) to the
destination (i + N) of that customer, then the entire problem is infeasible.

Therefore, to avoid trivially infeasible cases such as the above, and
without loss of generality, we shall assume that the inputs a., b:, ¢, d,
and [t (x, y)] satisfy the following conditions:

—o=g=<b<+ox i=1-..-N (1)
—o=<g=d =+ i=1,-.-.-N (2)
d—a=ti+ N) i=1,... N. 3)

Of course, (1), (2) and (3) are only necessary conditions for feasibility.
Whether or not the problem inputs guarantee a feasible vehicle route
and schedule cannot be predicted with certainty before the algorithm for
solving the problem is executed. Details on that point appear later.
Three additional assumptions concerning feasibility are the following:

1. If the vehicle arrives at any point (either origin or destination) later
than the upper bound or that point’s time constraint (b, or d,), then
the entire vehicle route and schedule is infeasible. In other words,
those upper bounds constitute hard constraints that should be met by
the vehicle. Of course, in a real-world setting this assumption could be
relaxed but the scope of this note is theoretical rather than implemen-
tation-oriented, hence the assumption.

2. If the vehicle arrives at any point (either origin or destination) earlier
than the lower bound on that point’s time constraint {a, or ¢,), then
the vehicle will stay idle at that point and depart immediately at a, or
¢.. In case the point is a pickup point, the vehicle will simply wait for
customer i and then depart at time a,, hence the assumption is
reasonable for pickup points. The main reason this assumption is
extended to delivery points as well is for uniformity. Indeed, if the
vehicle arrives at a destination earlier than time ¢,, there would be
usually little reason to force customer i to remain inside the vehicle
until ¢, (except perhaps to punish him by proving that the service
agency intends to enforce to the letter the constraints he himself set!).
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Of course, there may very well be valid reasons why a customer may
not want to arrive at his destination earlier than c,, hence we regard
both lower bound time constraints as hard constraints.

3. Finally, no other constraints (capacity or priority) will be considered.
Again, this causes no loss of generality, for the method of including
those constraints is known (see Reference [1]).

2. THE ALGORITHM

To soLVE the time-window version via Dynamic Programming, one has
to abandon the backward recursion scheme of Reference [1], because
backward recursion cannot keep track of time from a specified instant
(e.g. t = 0) onward. 1t is straightforward to overcome this difficulty by
developing a forward recursion scheme. Thus, define V(L, &, --- kn) as
the minimum achievable time from the time the vehicle departs from the
depot (¢ = 0) until state (L, &y, - - - , kn) is reached, with the understanding
that if V(L, k1, - -+ kn) = + o, then state (L, &y, - -+, kn) is infeasible.
We use the same state representation as in Reference [1], that is:

L = index representing the point the vehicle is currently visiting) (0
=L =2N)

k, = status of customer i(i = 1, .+., ): k&, = 3 means the customer is
awaiting for the vehicle, £ = 2 means the customer is in the
vehicle and &, = 1 means the customer has been delivered.

As in Reference [1), we assume that (L, ki, - -+ , kn) is consistent, that
is,if L=0,thenk;=...=ky=3,f1=<L<N,thenk,=2andif N +
1 =< L = 2N, then k._n = 1. In other words, the recursion wiil examine
only consistent states.

For any particular consistent state (L, ki, --- , kn), let X denote the
set of points that are potential immediate predecessors of L on the route
from the starting point to L. It is straightforward to check that X is
described by:

X={0ifk/=--- kv = 3}
U{i:l1=si=< Nand %/ =2} (4)
U{i:N+1=i=<2Nand ki-y=1)

where U means “union” and : means “such that” and where (&/, ----
ky') is the “predecessor-&” vector, given by

B’ = k+1lifi=L or i=L-N ®)
t ki otherwise i=1..-N)
For a particular element x of X we also define the following:
ulx) =t(x, L) + Vix, k', -+ -, ky') (6)
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and

u(x)

[ if 0=L=<N and ar<u(x)=<b)
or (N+1=<L=<2N and cr-n=ulx)=<dr_n)

ar if A=<L=<N and u(x)<ar)

v(x)=1 (N
co-ny if (N+1=<L=<2N and u(x)<cr-n)

{if (1=<L=<N and u(x)>b)

or (N+1=<L=2N and u(x)>dr-n).

+ o

“

Then the (forward) optimality recursion is
V(L, By, - -+, kv) = Mineexv(x) (L #0) (8)

with X, &/, v(x) and u(x) defined by (4), (5), (6) and (7).
The boundary condition of the problem is

v(0,3,3,---3)=0 9)
The optimal value of the problem is
Viin = Miny«1=2<ov V(L, 1, -+, 1). (10)

If Vinin = + o, the problem is infeasible.

3. DISCUSSION

THE SCOPE of this note has been rather limited: We have shown that the
approach developed in Reference [1] can be extended, with some straight-
forward modifications, to tackling the “time-window” version of the
single-vehicle DARP, as this was defined earlier. However, there are
some additional issues regarding this algorithm that merit discussion.

3.1. On the Loss of Generality of the Objective Function

The approach developed in the previous section, although valid if the
objective function is to minimize the time needed to service all customers,
may not be necessarily generalizable to objective functions dealing with
the minimization of total customer dissatisfaction (however that is de-
fined). In fact, the possibility of such an extension, although straightfor-
ward in the absence of time windows,!" is an open question when time
windows are present. Looking at this issue from another viewpoint, it is
quite conceivable that in many of those problems the number of feastble
vehicle schedules becomes so limited (if actually that number is not equal
to zero), that the difference in the optimal vehicle schedule under alter-
native objective functions (total dissatisfaction versus time to deliver all
customers) may not be that significant. It is speculated that in such
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“highly feasible” cases, either objective will produce more or less the
same vehicle route and schedule.

3.2. On the Computational Complexity of the Algorithm

The computational effort of this algorithm is 0(NV?3") and its storage
requirement is 0(N3"), the same as in the algorithm of Reference [1]. As
noted in Reference [1], this rapid exponential growth sets the practical
limit on the size of problems that can be solved to be around N = 8 to 10
customers (or 17 to 21 points). In fact, it was observed in Reference [1]
that the CPU time associated with the unconstrained version of the
problem was of the order of 2.7 seconds for N = 5, 46.8 seconds for
N = 7 and 591.4 seconds for N = 9 (on a VAX 780/1I). Shorter execution
times were observed in the presence of capacity or priority constraints,
but the general growth pattern was similar. Since the structure of the
algorithm of this paper is virtually identical to that of Reference [1] (as
far as its number of iterations are concerned), we expect a similar growth
pattern and similar order-of-magnitude values for its CPU time. Because
of the way the time window constraints are handled within the algorithm,
we do not expect a significant variation in CPU time with respect to how
wide or how narrow those windows are. This is in contrast to other time-
window algorithms (e.g. Reference [6]) where the time to find a feasible
(or optimal) solution depends significantly on how narrow the time
windows are.

How viable can this algorithm be in a real-world environment? The
answer to this question depends crucially on the environment itself. A
discussion of this issue in an immediate-request environment was pre-
sented in Reference [1] and need not be repeated here. For an advance-
request environment (to which the algorithm presented here is more
applicable) the need of very fast execution times is less important than
before. On the other hand, in an advance-request environment the sizes
of problems that are likely to be imposed on the algorithm are likely to
be larger than before. Hence the computational burden associated with
an exact approach cannot be overly deemphasized, and this has prompted
many research groups to use heuristic routing algorithms instead of exact.

3.3. On Using This Algorithm as a Subroutine in a Multivehicle
Environment

In References [3, 4] this author developed some new fast, polynomial-
time heuristic algorithms for the single-vehicle many-to-many Dial-A-
Ride problem without time constraints. Those algorithms are currently
used as subroutines in a multivehicle advance-request algorithm devel-
oped by the author and his colleagues in Reference [8]. Time constraints
in the multivehicle version do exist, but are treated indirectly and in a
“soft” way, that is, there are no guarantees that desired pickup or delivery
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times will be satisfied “to the minute.” It was realized that trying to
provide hard constraint guarantees would likely render most of those
problems infeasible (unless the time windows were suspiciously chosen),
and would not make too much sense anyway for real-world problems. It
would be interesting however to attempt to use the algorithm described
in this note as a subroutine instead of the heuristic algorithms. The fact
that the number of customers handled by each vehicle in each time group
turns out to be rather small (for instance, around 5 customers per vehicle
per time group for a demand rate of 100 customers per hour, 10 vehicles
and a 30-minute time group size) would alleviate the potential computa-
tional obstacles associated with this algorithm for the majority of cases.
No computational experience with this algorithm along the above lines
exists to date.
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