A Dynamic Programming Solution to
the Single Vehicle Many-to-Many
Immediate Request Dial-a-Ride
Problem

HARILAOS N. PSARAFTIS

Massachusetts Institute of Technology, Cambridge, Massachusetts

An investigation of the single-vehicle, many-to-many, immedi-
ate-request dial-a-ride problem is developed in two parts (I
and II). Part I focuses on the “static” case of the problem. In
this case, intermediate requests that may appear during the
execution of the route are not considered. A generalized objec-
tive function is examined, the minimization of a weighted
combination of the time to service all customers and of the total
degree of “dissatisfaction” experienced by them while waiting
for service. This dissatisfaction ts assumed to be a linear
function of the waiting and riding times of each customer.
Vehicle capacity constraints and special priority rules are part
of the problem. A Dynamic Programming approach is devel-
oped. The algorithm exhibits a computational effort which,
although an exponential function of the size of the problem, is
asymptotically lower than the corresponding effort of the clas-
sical Dynamic Programming algorithm applied to a Traveling
Salesman Problem of the same size. Part II extends this ap-
proach to solving the equivalent “dynamic” case. In this case,
new customer requests are automatically eligible for consider-
ation at the time they occur. The procedure is an open-ended
sequence of updates, each following every new customer re-
quest. The algorithm optimizes only over known inputs and
does not anticipate future customer requests. Indefinite defer-
ment of a customer’s request is prevented by the priority rules
introduced in Part I. Examples in both “static” and “dynamic”
cases are presented.

Dial-A-Ride involves the dispatching of a fleet of vehicles to satisfy
130

Transportation Science 0041-1655/80/1402-0130 $01.25
Vol. 14, No. 2, May 1980 © 1980 Operations Research Society of America

THE DIAL-A-RIDE PROBLEM AND DYNAMIC PROGRAMMING / 131

demands from customers who call a vehicle operating agency requesting
service, requesting that is, to be carried from specified points to other
similarly specified points. Such demand-responsive transportation sys-
tems have been in operation in several metropolitan areas of the United
States as well as abroad during the recent years: Rochester, New York;
Ann Arbor, Michigan; San Jose, California; Tokyo, Japan, etc.

Several versions of dial-a-ride service exist today, giving rise to several
types of what we shall call the “dial-a-ride problem.” The particular
version of the problem we shall examine is a single-vehicle, many-to-
many, immediate-request one. “Many-to-many” means that the origins
(pickup points) as well as the destinations (delivery points) of the various
customers are all distinct points. “Immediate-request” means that every
customer requesting service wishes to be serviced as soon as possible.

We shall study a generalization of the objective function of the classical
Traveling Salesman Problem (TSP), namely, the minimization of a
weighted combination of the time needed to service all customers and of
the total degree of “dissatisfaction” they experience until their delivery.
This dissatisfaction is assumed to be a linear function of the time each
customer waits to be picked up and of the time he spends riding in the
vehicle until his delivery. In addition, vehicle capacity constraints are
part of our problem.

Our study is organized in two parts. Part I focuses on the “static” case
of the problem. Part II focuses on the corresponding “dynamic” case.

I. THE “STATIC” CASE

IN THE “STATIC” CASE, each customer requests service by telephone and
thus a chronological list of requests can be formed. At a certain point in
time (¢ = 0) a single vehicle becomes available. The task of the vehicle
operator is to provide service to the customers the list contains at ¢ = 0,
and only to those. In other words, at ¢ = 0 our list is closed and no new
customer requests are appended to it during the execution of the route.
Any such requests can be arranged in another list for consideration after
the completion of the route or for the scheduling of another vehicle. In
the “dynamic” case, new customer requests occurring during the execu-
tion of the route are automatically eligible for consideration at the time
they appear.

The following two points will be made in the formulation of the “static”
problem in order to facilitate its subsequent extension to the equivalent
“dynamic” case:

First, vehicle routes will be open paths, ending with the delivery of a
(last) customer, instead of tours, as in the classical TSP. This causes no

132 / H. N. PSARAFTIS

loss of generality in our formulation, as the open and closed route
problems are reducible to one another in linear time.!!!

Second, special priority constraints will be imposed. Their description
goes as follows.

In any particular vehicle route we can identify the sequence of pickups
and the sequence of deliveries, sequences which, in general, will be
merged with one another. The position (1st, 2nd, etc.) that a particular
customer holds in the sequence of pickups will not in general be the same
as his First-Come-First-Served (FCFS) position in the initial list of
customer requests, the difference of these two positions constituting the
pickup position shift of that customer. For instance, a customer holding
the 5th position in the initial list and being picked up 3rd has a pickup
position shift of +2 while this shift becomes —1 if the customer is picked
up 6th. A delivery position shift can be similarly defined as the difference
between the position of a customer in the sequence of deliveries and the
FCFS position of that customer in the initial list of requests.

Under our special priority constraints and for every customer, we shall
not allow either one of the two posttion shifts defined above to be greater
in magnitude than a prescribed nonnegative integer MPS. MPS stands
for Maximum Position Shift and is an input to our problem. If MPS = 0,
each customer should be picked up and delivered according to his FCFS
position in the initial list. On the other hand, for N customers, MPS = N
— 1 means that our priority constraints are superfluous and customers
may be picked up or delivered in any order we wish.

The purpose of these constraints, although somehow vague for the
“static” case, will be seen to be very important for the “dynamic” case,
namely in preventing the possibility that the service of any particular
customer will be indefinitely deferred by the algorithm. For the moment,
however, these constraints can be considered as “service guarantees” for
all the customers. For example, the customer who holds the ith position
in the initial list is guaranteed that his position in the sequence of pickups
and in the sequence of deliveries will be between i — MPS and i + MPS.

Solution procedures for the dial-a-ride problem depend in general on
the particular version examined. Due to the fact that the simplest version
of the problem cannot be easier to solve than the classical Traveling
Salesman Problem,* the bulk of research efforts for solving the dial-a-
ride problem has been directed toward heuristic procedures, such as in
[2-5].

In this paper, we shall present an exact approach for the solution of

* The simplest version of the problem is a single vehicle, many-to-one, immediate
request, “static” problem, where the objective is to minimize total distance traveled and no
capacity or other constraints are imposed. This version is, in fact, a classical TSP.

THE DIAL-A-RIDE PROBLEM AND DYNAMIC PROGRAMMING / 133 .

the version of the dial-a-ride problem described above. The approach is
based on Dynamic Programming and derives from the classical D.P.
solution to the TSP, first suggested by HELD AND KaRp.[! It is, however,
more sophisticated in that it examines the constraints and the special
structure of the problem in a fashion particularly suited to the recursive
nature of the procedure. For example, the algorithm is structured in such
a way, so that the route legitimacy requirement (the origin of each
customer precedes his destination on the route) is taken care of auto-
matically. The vehicle capacity and MPS and constraints are also incor-
porated into the recursive procedure. In addition, the algorithm can
examine several different (i.e. nonreducible to one another) specialized
objectives with equal ease.

The exact way in which the computational effort of our algorithm
grows is a complicated function of the values of N (number of customers),
MPS and C (vehicle capacity). Storage requirement and running time
are bounded by exponential functions of N, but the algorithm’s worst
case performance is asymptotically better than that of the classical D.P.
algorithm,'® when the latter is applied to a TSP on a graph of the same
size.

*Static” Case Formulation

In our problem formulation, we assign numbers to customers according
to the order in which they have telephoned the agency for service and we
arrange them in the list in the same order. Thus, customer i holds the ith
position in the list. Let N be the total number of customers. Also let
“+i” be the pickup point (origin) and “—i” the delivery point (destination)
of customer { (i = 1, 2, --., N) and let A be the starting point of the
vehicle (location of vehicle at ¢ = 0). We shall assume that the time to go
from any one of the 2N + 1 points of our problem, i, directly to any other
point j is a known and fixed quantity ¢(i, j).

Our goal is to find a vehicle route starting from A and ending at one of
the delivery points so that the following hold:

1) The quantity

wi YN T+ we Yy [a- WTi + (2 — @)RTI) (1)
is minimized. Our notation is the following:

wy, w2: Given “weights”
a: Customers’ time preference constant (0 = a < 2)
T;: Duration of the jth leg of the route
WT:: Waiting time of customer i, from ¢ = 0 until his time of pickup
RT;: Riding time of customer i, from his time of pickup until his
time of delivery.

134 / H. N. PSARAFTIS

2) Vehicle routes should be legitimate, namely each customer should
be picked up before he is delivered.

3) The vehicle has a certain capacity of C customers that cannot be
exceeded.

4) Maximum Position Shift constraints must be satisfied. Thus if p; is
the position customer i holds in the sequence of pickups and d; the
position he holds in the sequence of deliveries, then for a given non-
negative integer MPS, we should have:

|i—pi|SMPS for 1=12,--.,N 2)
|i—di|$MPS for =12 ...,N (3)

Some clarifying observations follow.

In (1), we can recognize ¥ 72| 7} as the time to service all customers. In
fact, a special case (w, = 1, w; = 0) of our generalized objective calls for
the minimization of the above quantity, an objective identical to that of
the classical TSP.

The quantity Y/, [a- WT; + (2 — a)-RT;] is the assumed form of the
total degree of “dissatisfaction” experienced by the customers until their
delivery. Note that the waiting and riding times are weighted unequally
in general (except if « = 1, when customers are indifferent between the
two). Note also that the restriction 0 < a < 2 causes no loss of generality,
since the ratio /(2 — «a) can take any value between zero and infinity
and thus, the relative values of the customers’ waiting and riding times
can have any specified ratio. A special case (w; = 0, w; = 1) of our
generalized objective calls for the minimization of the total (or average)
customer “dissatisfaction.”

One should note that our generalized objective function does not
include terms reflecting the customers’ waiting times from the instant of
call until the instant the vehicle becomes available (¢ = 0). This apparent
omission has no effect on our formulation since these terms, one for each
customer, would appear as a constant (sunk cost) in our objective and
would not affect our subsequent decisions. The linearity of our objective
function is crucial in the validity of the above argument.

A clarifying observation for (2) and (3) is that the particular form of
these is not binding in our formulation. For example, the values of MPS
in (2), (3) need not be the same. Neither of the inequalities need to be
two sided or symmetric. Finally, each customer { may have his own upper
and lower bounds for his MPS;.

“Static” Case Solution

Our Dynamic Programming approach goes as follows. The state vector
is (L, k1, -+, kn) with the following conventions:

THE DIAL-A-RIDE PROBLEM AND DYNAMIC PROGRAMMING / 135

a) L : Point the vehicle is currently visiting. We assume
that
L=0 : Vehicle is at starting point A
1=L=N : Vehicle is at point +L, i.e. picks up customer L
N+ 1=<L =2N: Vehicle is at point —(L — N), i.e. delivers customer
L-N.

We also assume that a customer boards on or gets off the vehicle
immediately upon arrival at point L.

b) k;: “status” of customer j (j =1, ---, N). We assume that:

k; = 3: Customer j has not been picked up so far
k; = 2: Customer j is in the vehicle
k; = 1: Customer j has been delivered.

Feasibility considerations. Not all state combinations will be feasible.
The following is a list of necessary conditions for the feasibility of a
particular state (L, k1, -- -, &n):

1) The state should be consistent, namely,

i) IfL =0,thenk; =3forallj=1,...,N (4)

il) If1=L <N, thenk, =2 (5)

iii) IN+1=<L=<2N,thenk, y=1. 6)
The above follow directly from the definition of (L, &,, -- -, kn).

2) The state should satisfy the vehicle capacity constraints. Letting x.
be the number of £’s in the state vector which are equal to 2, these
constraints can be formulated as follows:

i) fi=L=<N,thenx:<C (7)
i) fN+1=<L=<2N,thenx;<C-1 (8)

We can see the validity of the above through the observation that x, is
the number of customers inside the vehicle. We can also observe that we
actually need impose only one of (7) and (8). For example if L is a delivery
stop, (8) will always be satisfied if (7) is satisfied for the state correspond-
ing to the first pickup stop preceding this delivery stop and vice versa.

3) The state should satisfy the MPS constraints. In addition to the
number x; defined above, let x; be the number of k’s in the state
vector which are equal to 1. Then the MPS constraints can be
formulated as follows:

i) f1<L=<N,then|L — (x: + x2)| =< MPS 9)

136 / H. N. PSARAFTIS
il N+ 1=<L=<2N,then|(L ~ N) - x,|<MPS (10)

We can see the validity of (9) by the observation that x; + x; is the
number of customers either delivered or currently in the vehicle, hence
the number of customers picked up so far. But this number is nothing
more than the position customer L holds in the sequence of pickups,
hence L — (x; + x2) is his corresponding pickup position shift and thus,
(9) is equivalent to (2). A similar argument can explain that (10) is
equivalent to (3).

Conditions (4) through (10) are necessary but not sufficient for the
feasibility of a particular state (L, &y, - - -, k). To complete our feasibility
test we must look at the feasibility of its “next” states. If none of them is
feasible, then our original state is infeasible. If on the other hand, there
exists at least one that is feasible, then our original state is feasible as
well. The fact that for determining the feasibility of any particular state
we have to know a priori about the feasibility of its “next” states
constitutes the recursive nature of feasibility, a property which is partic-
ularly well-suited to the nature of Dynamic Programming.

The set of states (L', ki, ---, kv") which are “next” to a given
consistent state (L, &y, - - -, kn) is such that L’ belongs to the union S of
the following two sets:

a) The set of “next” pickup stops
Ss = {i:1=<i=< N with k; = 3} (11)
b) The set of “next” delivery stops

Se={i:N+1=<i=<2Nwithk_n=2). (12)
Also the new k-vector (k') is given by
, ki—1 ifj=Lorj=L~-N
k= {kj otherwise (13)

forallj=1,..., N.

The case where both S; and S; are empty corresponds to the case
where k; = 1forallj =1, ..., N, meaning that all customers have been
delivered. Any such state is called a terminal state and obviously has no
“next” states. For terminal states, conditions (4) through (10) are suffi-

cient for feasibility.
Summarizing, the following is a sequence of “Screens” to determine
whether a particular state (L, k;, - --, kn) is feasible or not.

Screen 1 (Consistency): If any one of (4), (5), (6) (check the one that
applies) does not hold, then STOP: (L, &, ---, kn) is infeasible. Other-

THE DIAL-A-RIDE PROBLEM AND DYNAMIC PROGRAMMING / 137

wise, if L = 0, STOP: (L, k,, - - -, kn) is feasible. Otherwise, go to Screen
2.

Screen 2 (Vehicle Capacity): If any one of (7), (8) (check the one that
applies) does not hold, then STOP: (L, &4, - - -, kn) is infeasible. Otherwise
go to Screen 3.

Screen 3 (Maximum Position Shift): If any one of (9), (10) (check the
one that applies) does not hold, then STOP: (L, &, - - -, ky) is infeasible.
Otherwise go to Screen 4.

Screen 4 (“Next” states): Form S, the union of the sets defined in (11)
and (12). If S is empty, then STOP: (L, k&, - - -, kx) is feasible. Otherwise
do the following: Examine one by one the “next” states (L', &y, - -+, kx’)
with L’ € S and %’ obeying (13). At the first feasible state encountered,
STOP: (L, ki1, ---, ky) is feasible. If no feasible state is encountered,
STOP: (L, ki, - .-, kx) is infeasible.

A final observation concerning feasibility is that the definition of a
“next” state in (11) through (13) automatically takes care of the route
legitimacy constraints. Thus, a customer’s pickup (change of £ from 3 to
2 for that customer) will always precede his delivery (change of % from 2
to 1).

Optimality considerations. Let V(L, k1, - - -, kn) be the optimal value
(measured in terms of our specific objective function) of all subsequent
decisions from (L, &1, - - -, ky) till the end of the route (i.e. till a terminal
state is reached). V is defined only if the corresponding state is feasible.
It can be seen that V must obey the following optimality recursion:

V(L’ kl) tt kN)

0 ifS=4. (14)

_ {MinLres[t(L, LY M+ V(L' kY, ---,kn')] fS#6d
In (14), S is the union of S; and S; defined in (11) and (12) and &;’ is
defined by (13). M is the factor of proportionality by which the time (L,
L’) needed to go from L to L’ should be multiplied.
To estimate M, we consider all the marginal contributions to the value
of our objective due to the fact that the vehicle travels from L to L’.
From (1) we can see that these can be divided into two categories:

a) Those reflected into the term w, -3 7% 7;. The corresponding mar-
ginal contribution is simply w,-¢(L, L’).
b) Those reflected into the term w: -, [aWT; + (2 — a)-RT:].

Letting x3 and x; be the cardinalities of the sets S; and S defined in (11)
and (12), we can see that when the vehicle travels from L to L’, the total
waiting time is simply xs-¢(L, L’), and the total riding time is x;-¢(L, L’).

138 / H. N. PSARAFTIS

Thus, the marginal contribution to this term is w;-[a-x3 + (2 — a) - x2]-
t(L,L").
We can see therefore that:

M=w + wla-x3+ (2 — a)-x2]. (15)

All the parameters shown above are either known a priort, or readily
obtainable from the state vector.

Structure and Complexity of the “Static” Case Algorithm

The structure of our Dynamic Programming algorithm is as follows:

1) There is a “Screening” part where the sequence of “screens” 1
through 4, described in the previous paragraph is performed, using
backward recursion. We tabulate feasibility information into the logical
array FEASBL(L, k,, ---, kn) with values “true” or “false” depending
on whether the corresponding state is feasible or not.

2) There is an “Optimization” part, which consists of the application
of (14) using (11), (12), (13), and (15). Backward recursion is used here in
the same way as in “Screening.” (14) is applied only for those states
already characterized as feasible by “Screening.” The element L’ of S
which minimizes M- ¢(L, L") + V(L', k', - - -, kn’) is stored into the array
NEXT (L, k1, -- -, kn).

3) Finally, we have the “Identification” part which uses the informa-
tion of the array NEXT created previously. We start from the state (0, 3,
3, - .+, 3) and then move forward to identify our optimal route. This part
takes 2N steps.

It is thus necessary to reserve (2N + 1)3" memory locations for each
of the arrays FEASBL, V and NEXT. If no space is reserved for
inconsistent states, we can bring this figure down to 2N-3V' + 1
locations. The algorithm’s running time is bounded by (2N + 1)?3", for
in both “Screening” and “Optimization” we have to look at a maximum
of (2N + 1) “next” states for each particular state. Comparing the storage
requirement of (2N + 1)3" with the corresponding figure (2N + 1)2@N+V
of the classical D.P. approach to a TSP of (2N + 1) nodes, we see that
the ratio (2N + 1)3Y/(2N + 1)2@¥*D = 1/2 (3/4)" goes to zero as N —
. The reason for this difference in performance is that our algorithm
takes advantage of the fact that not all TSP tours are feasible for the
dial-a-ride problem because of the route legitimacy constraints.

The vehicle capacity C and the Maximum Position shift MPS also play
roles in determining the algorithm’s computation effort. Qualitatively we
should expect the latter to be an increasing function of C and MPS. The
corresponding quantitative analysis is somewhat complicated. It is pre-
sented in [7], along with additional suggestions on algorithm refinements.

THE DIAL-A-RIDE PROBLEM AND DYNAMIC PROGRAMMING / 139

Computational Experience

The exponential growth of the computational effort of the algorithm
can be best illustrated in Table 1. Table I represents typical CPU times
incurred when a computer program implementing this algorithm was run.
The VAX/VMS timeshared interactive computer system of the MIT
Joint Computer Facility was used for that purpose. It should be noted
here that possible algorithm refinements suggested in the previous section
and in [7] were not implemented in the computer program in question.
For instance, storage space was reserved for (2N + 1)3" rather than
2N3%! + 1 memory locations for each of the arrays V, NEXT and
FEASBL.

All the figures of Table I refer to the problem’s unconstrained (worst)
case, namely to MPS = N — 1 and C = N. Variations of CPU times when
MPS < N — 1 and/or C < N were also examined. A typical example is
represented in Table II, where CPU times for N = 7 and various values
of MPS and C are displayed. (Note that for MPS = 6 or for C = 7 the
corresponding constraints are essentially superfluous.) Referring to Table
I1, one can verify the earlier anticipated behavior, namely that CPU time
increases as MPS or C increase, everything else being held constant.

In general, the figures in Tables I and II tend to confirm the increasingly
higher price one has to pay for exactly solving many-to-many dial-a-ride
problems of increased size. The tractable problem size will depend, among
other things, on the tightness of the constraints, on possible refinements
in the computer code, on the computer facility used (dedicated or time-
shared) and on how quickly solutions are needed. In that last respect,
implementing the algorithm in a “dynamic” environment, where calcu-
lations should be performed in a reasonable amount of time, will certainly

TABLE 1
Typical CPU Times (Seconds) Versus N (Number of Customers)®
N 2 3 4 5 6 7 8 9
CPU 0.6 0.7 1.1 2.7 9.6 46.8 149.7 591.4

¢ The unconstrained (worst) case is displayed (MPS = N — 1, C = N).

TABLE II
Typical CPU Times (Seconds) Versus MPS and C (N = 7)
MPS
C
0 3 =6
1 12.1 13.7 15.3
4 13.0 25.5 36.9

=7 13.1 29.6 46.8

140 / H. N. PSARAFTIS

be more difficult than doing so in a “static” setting. On the other hand,
as it will be seen in Part II of this paper, the “dynamic” nature of the
real-world scheduling/dispatching process is such that it may not be
absolutely essential to obtain exact solutions over a long scheduling
horizon (i.e., simultaneously consider many customers per vehicle), par-
ticularly in view of the fact that the arrival of new customers will
necessitate the continual update of each vehicle’s schedule. In any event,
customers exceeding the algorithm’s limit can be arranged in a “standby”
buffer and become “active” as soon as possible, or be assigned to other
vehicles.

An Example of the “Static” Case

We present now a series of cases regarding the Euclidean graph of 15
nodes (7 customers) of Figure 1. The cases vary as far as the objective,
the capacity C and the value of MPS are concerned. In all cases the input
value of a is 1.00 (customers are indifferent between waiting for and
riding in the vehicle). The starting point A can be thought of as a depot.

Cases 1 and 2 (Figs. 2 and 3) represent the unconstrained case, where
no MPS and capacity constraints exist. Case 1 has wy = 1, w, = 0 and

O +1
O—l

® 4 (veror) O -

O +3
®) o
O

Fig. 1. Origins (+), destinations (—) and starting point (A) of the example.

THE DIAL-A-RIDE PROBLEM AND DYNAMIC PROGRAMMING / 141

CILLERY

LIVER ¢ 4

PICK UP 8 «

1K UP & €

PELIVER ¢ &

Fig. 2. Case 1: w; = 1, w; = 0, no MPS or capacity constraints.

Case 2 has w; = 0, w; = 1. The difference in optimal routes can be
observed. For instance, the route for Case 1 looks very much like a typical
good route for a TSP, while this is not true for the route of Case 2.

We subsequently impose an MPS constraint of 2 and a capacity
constraint of 3 for Case 3 (Fig. 4). Here w, = 1, w; = 0. We observe how
these constraints change the optimal route from that of Case 1.

Our final case is Case 4 (Fig. 5) with w, = 0, w, = 1. Here MPS = 0, but
no capacity constraints exist. Despite MPS = 0, there is still one degree
of freedom for optimization left: How one should merge the two FCFS
sequences of pick-ups and deliveries.

From Figures 4 and 5 we can see that for “random” locations of
customers, the shape of the route becomes more and more complicated
as the constraints become more tight.

II. THE “DYNAMIC” CASE

THE MAIN AsSUMPTION in Part I has been that at a given point in time
(¢t = 0) the list of customer requests is closed and no new requests are
further considered, until all the customers that this list contains at ¢ = 0
are serviced. In Part II we investigate what happens if we drop the above

142 / H. N. PSARAFTIS

(31787 % W DELIVER $ 1

cK uP & 2

K uP 3 6

POT PELIVER 8 6

ICK UP & 3

ICK UP 8 7

TVER ¢ 2
Fig. 3. Case 2: w, = 0, w2 = 1, no MPS or capacity constraints.

assumption. The corresponding version constitutes the “dynamic” case
of the problem.

In the “dynamic” case, each new customer request is automatically
eligible for consideration at the time it appears. Each time such a request
(immediate) appears, the input to our problem is modified and one should
expect a corresponding modification to the problem’s solution as well.
This modification, for obvious reasons, cannot affect the portion of the
route executed prior to the time the new request is made known, but will
affect the remaining portion of the route. Since such new requests may
be arriving for an indefinite period of time, our “dynamic” case is by
nature open-ended, and the corresponding solution procedure must be
active as long as these new inputs keep entering our problem.

We can, at this point only qualitatively, suggest several principal
features that such “dynamic” procedure should possess.

1) At any point in time and for the current set of the problem inputs
(current position of the vehicle and the current status of all customers)
the procedure should be able to produce upon request what we shall call
the tentative optimal route, and do so in a reasonably short period of
time. The tentative optimal route is the optimal solution, according to a
prescribed objective, corresponding to the current set of inputs and only

THE DIAL-A-RIDE PROBLEM AND DYNAMIC PROGRAMMING / 143

CL AR JVER 8 1

LIVER & S

PELIVER 3 &

Fig.4.Case 3: un =0, w. =1, MPS =2, C=3.

to those. This route will indeed be totally optimal if and only if no
customer request appears during its execution.

2) Each time a new customer request appears, the procedure should
be able to incorporate this new information as part of the problem’s input
and somehow solve the new problem again, also in a reasonable amount
of time. This updating process will produce a new tentative optimal route
each time a new customer request is made.

3) The procedure should be flexible enough so that it is to some extent
able to reconsider its past decisions. Any procedure which bases its
updates on Jocal reoptimizations of prior solutions will be suboptimal.
For instance, a local reoptimization would occur if, upon appearance of
a new customer request, one decides to examine only the possible inser-
tions of the pickup and delivery stop of this customer into the current
sequence of other pickup and delivery stops and therefore a priori
exclude the possibility that the appearance of the new input may render
the current sequencing of already existing customers no longer optimal.
Algorithms using the above “insertion” idea have been developed in [2]
and [4] and are, in that respect, suboptimal.

4) Despite the above, the reoptimization capability of a “dynamic”
procedure is a two-edged sword: A highly flexible procedure which is

144 / H. N. PSARAFTIS

oKX ur 8 1

K UP 8 3

VER § 2
Fig. 5. Case 4: w; = 0, w; = 1, MPS = 0, no capacity constraints.

solely based on global reoptimizations may present other complications.
In addition to representing a difficult combinatorial problem, such a
procedure may conceivably continually defer the service of any particular
customer for an indefinite period of time. Indefinite deferment of a
customer’s request can happen whenever a customer is being continually
assigned to the last position in the pickup or delivery sequence because
of his unfavorable geographical characteristics with respect to other
customers. The service (pickup or delivery) of such a customer will be
consistently given a low priority by the procedure, as long as other, more
favorable inputs keep entering our problem.

The issue of indefinite deferment is fundamental not only for the
“dynamic” case of the dial-a-ride problem, but for any other “dynamic”
scheduling problem. Any viable “dynamic” scheduling algorithm must
incorporate a mechanism to prevent, or at least discourage this possibility.
In [2] and [4], this possibility was partially kept under control, yet not
unambiguously eliminated, both through the assumed quadratic form of
the objective function and through use of heuristic criteria.

A simple example on how a “dynamic” procedure might operate is
depicted in Figure 6. The procedure is given a set of initial inputs (A:

initial position of vehicle, “+”: origins, “—”: destinations) and subse-

THE DIAL-A-RIDE PROBLEM AND DYNAMIC PROGRAMMING / 145

+2 +1

(a)
. -

()

(c)

Fig. 6. New request (customer 3) appears when vehicle is at B. New tentative
optimal route is produced when vehicle is at B’.

quently produces the tentative optimal route shown in Figure 6a. At the
time the vehicle is at B, a new request by customer 3 is made known (Fig.
6b). At this point in time the procedure revises the nonexecuted portion
of the route and produces the new tentative optimal route shown in
Figure 6¢. Note that the new route does not have B as origin, but a point
B’, slightly ahead of B. This is due to the fact that it will in general take
some time for the procedure to process the new input and reoptimize and
this time is reflected by the segment BB’. The process is repeated
indefinitely as long as new inputs keep entering our problem.

The algorithm we shall present for the “dynamic” dial-a-ride problem
derives from the D.P. algorithm presented in Part I for the corresponding
“static” case. Several modifications of the “static” algorithm are neces-
sary to accomplish this. Indefinite deferment is eliminated by the MPS
priority constraints already introduced.

146 / H. N. PSARAFTIS
“Dynamic” Case Formulation and Solution

A basic assumption, which actually reflects our optimization philosophy
for the “dynamic” case is that each time we update the problem solution,
we shall only be considering as the problem’s inputs all the information
we have on specific and known customer requests. By contrast, we shall
not be concerned with any, possibly available, probabilistic information
describing the spatial or time distribution of other future requests. In this
spirit, no customer request will be either anticipated or in any other way
taken into account before it actually occurs. A consequence of the above
assumption is that at each update we shall be optimizing only over
existing and active customer requests. Obviously, customers delivered
prior to a specific update are no longer part of our input at that update.

Several observations concerning our formulation are now made:

First, it can be seen that there is no need to perform an update (i.e.
reoptimize) except when a new customer request occurs. In fact, letting
(A= Py, P, ..., P,) be a particular sequence of stops having A as origin
and which constitutes a tentative optimal route, then it can be shown
that for any index i (0 < i = n), the sequence (B, P;.1, Pis2, - -+, P,) with
its origin B being any intermediate point on the arc (P;, P;,,), is also a
tentative optimal route for the set of stops (Pi+1, Pis2, -+, Pr), provided
no new customer request appears while the vehicle travels between A
and B. The above property is easily shown to be valid by contradiction
(see for example [7]).

Second, at any particular update, the objective function can be defined
as follows: Suppose that at the instant of our update, S; is the set of
customers on board the vehicle and S; the set of customers waiting to be
picked up. It is not difficult to see that these are the same S; and S;
defined by (11) and (12) in Part I. Letting now x; = | Sz | and x3 = | 83|, it
is clear that the route to service all of the above customers (and only
those) will consist of xo» + 2x3 legs, each of duration T; (=1, -+, xo +
2x3). It is also clear that at the instant this update is performed there is
no reason to worry about the portion of the route which has already been
executed because no subsequent decisions on our part can influence what
has happened in the past. Thus, all “costs,” i.e. changes in the value of
the objective function that have incurred in the past are “sunk costs,”
and since these costs are additive, they can be neglected from further
consideration. The last argument allows us to reset our time origin (¢ =
0) at the instant of the update and consider only what our decisions can
influence thereafter. In that respect, a customer i belonging to the set S,
will only experience an additional “dissatisfaction” equal to (2 ~ a)-RT,
with the riding time R7; being measured from the new time origin (¢ =
0) until the delivery of the customer. By contrast, a customer % belonging

THE DIAL-A-RIDE PROBLEM AND DYNAMIC PROGRAMMING / 147

to the set S; will experience an additional “dissatisfaction” equal to a-
WT: + (2 — a)-RT}, with the waiting time WT}. being measured from
the new time origin (¢ = 0) until pickup and the riding time RT; from
pickup until delivery. Thus, we can write our objective function for a
specific update of the “dynamic” case as follows:

Minimize w, 2}341'2"3 T, + Il)z(zies3 aWT; + Z,‘esrzljs3 (2 — @) RT;). (16)

It is easy to see that we can reduce (16) to a formulation which is exactly
the same as the “static” case. We can do this by resetting the origins of
all customers belonging to S: to coincide with the location of the vehicle
at the instant of the update. In this way, we assume that the vehicle is
empty at the instant of the update. However, the algorithm will imme-
diately execute a sequence of x; “dummy” pickup stops, separated from
one another by a zero time interval, and thus adding these customers to
the vehicle at once. Renumbering our customers from 1 to N = x; + x3,
our objective function reduces exactly to the “static” form examined in
Part], i.e.,

Minimize wn $72 T; + w2 Y1 (e WTi + (2 —)RT)). (17

The solution of this problem will obviously have 7, =0forj=1, --., x;
and WT;=0fori=1, .., xo.

As far as constraints are concerned, we shall maintain the vehicle
capacity and MPS constraints introduced already in Part I. The differ-
ence in the MPS constraints between the “static” and “dynamic” cases
is that in the “dynamic” case we also have a mechanism to keep track of
the various position shifts from one update to another, as these will in
general change. The mechanism for doing this is straightforward to
develop and is particularly helpful for the reformulation of relations (9)
and (10) for the “dynamic” case. Details can be found in [7]. The capacity
constraints are formulated in exactly the same way as in Part I (see
relations (7), (8)).

Finally, some words are necessary concerning the determination of the
location of the origin B’ of the new tentative route (see Fig. 6¢c): Recall
that due to the noninstantaneous processing of the new input, an interval
of time will elapse between the instant ¢z of the request (when the vehicle
is at B) and the instant 3" when any decision on our part can be actually
implemented. This time interval (¢g" — tg) is reflected in the segment
BB’. So actually, at the instant ¢ when the vehicle is at B, an estimate
of the time needed to “run” the algorithm, produces the point B’ and it
is for this new origin that the subsequent update is done. For long

148 / H. N. PSARAFTIS

distances, small number of customers or fast computers one may assume
that B’ practically coincides with B.

An Example of the “Dynamic” Case

We shall now present an example to which we shall apply our “dy-
namic” algorithm. Without loss of generality we shall assume that we
wish to minimize the total customer “dissatisfaction” [w; = 0, w; = 1 in
(17)]. a is assumed equal to 1, MPS = 3, C = 4. The distance metric of
the problem is assumed Euclidean and the vehicle is assumed to be
traveling at a constant speed of 30 mph. Finally, we assume that each
update the interval (fz- — £z) to process the new inputs and produce the
new solution is negligibly small.

At t = 0, the vehicle becomes available at point (1.000, 4.000) (Cartesian
Coordinates in miles). At that time, 6 customers have already requested
service. (See Table III and Figure 7.)

In addition, we shall assume that a chronological sequence of additional
customer requests will occur in the future (see Table IV).

It is our assumption, of course, that we are not able to anticipate these
requests ahead of time and act accordingly. These requests become part
of our input only after the customer files a request at the indicated time.

Figure 8 represents the tentative optimal route for our first update at
t=0.

At ¢ = 20 minutes, customer 7 appears. At that time, the vehicle is at
point (4.418, 4.388), point marked by (*) in Figure 8.

Figure 9 shows the new tentative optimal route for this second update
at ¢ = 20 minutes. The portion of the route between ¢t = 0 and ¢ = 20 has
already been executed and is shown by dotted lines.

At ¢t = 40 minutes, customer 8 appears. At that time, the vehicle is at
point (3.863, 8.000).

Figure 10 shows the new tentative optimal route for this third update
at ¢ = 40 minutes.

TABLE III
Initial Customer Requests (t = 0}
Pickup Point Coordinates (miles) Delivery Point Coordinates (miles)

Customer
X Y X

—
@O ;MU W
- 00 QO W = DN

o
e I N N
SRS Y- N N

[~> 3 I L U

THE DIAL-A-RIDE PROBLEM AND DYNAMIC PROGRAMMING / 149

O i O+5

o-
.. o
o-
o o-
o o

Fig. 7. Customer requests and vehicle location at ¢ = 0.

TABLE IV
Chronological Sequence of Additional Customer Requests

Pickup Point Delivery Point

Time of Request c Coordinates (miles) Coordinates (miles)
(minutes from ¢ = 0)

X Y X Y

20 7 4 6 11 3

40 8 7 7 9 4

55 9 4 1 5 3

80 10 5 4 7 4

Our fourth update occurs at ¢ = 55 minutes, when customer 9 appears.
At that time, the vehicle is at point (10.467, 7.066).

In Figure 11 we show the new tentative optimal route for this fourth
update at £ = 55 minutes.

Our fifth (and final) update occurs at ¢ = 80 minutes, when customer
10 appears. At that time, the vehicle is at point (5.090, 1.000).

In Figure 12 we show the new tentative optimal route for this fifth
update at ¢ = 80 minutes.

An interesting observation we can make on Figure 12 is that the
delivery of customer 6 precedes the delivery of customer 10, only because
of the MPS = 3 constraint. In fact, if no such constraint existed, it would

150 / H. N. PSARAFTIS

LivEr 3 &

LIVER § 5

YLIUEI L X

CISION POINT

K WP ¥ 6

Fig. 8. ¢ = 0, update #1. Customer 7 will appear when vehicle is at * (¢ = 20).

QICK ur 8 5

LIVER 8 §

CISION POINT

~

fA}_ Executed portion of w3
i the route from update #1. \\
|
i
|
|

KuP s s
+2

Fig. 9. ¢ = 20, update #2. Customer 8 will appear when vehicle is at * (¢ = 40).

THE DIAL-A-RIDE PROBLEM AND DYNAMIC PROGRAMMING / 151

+2 CISIoN POLNT 1K ur 8 S

Executed portion of
the route from update #2.

o9 'Y

Fig. 10. ¢t = 40, update #3. Customer 9 will appear when the vehicle is at * (¢

= 55).
s :
~ - /‘.\
™~ P \
~ -
- - \
Executed portion of the ™~ P CISION POINT
route from update # 3. +8.

PELIVER 8 S

LIWR 8 8

bﬁLI\’EF f e

it ¥ W PN ICK UP 3 6

*
Fig. 11. ¢t = 55, update #4. Customer 10 will appear when vehicle is at * (¢ =
80).

152 / H. N. PSARAFTIS

Executed portion of Y 4
the route from update # 4. \

\
\

LIVER ¢ €

|

i

|

!

LX) ELIVER $10 -8 :

) |
f / ~ |
LIVER ¢ 9 it

Fig. 12. ¢ = 80, update #5. No more customers will appear. Note effect of
MPS constraints on delivery of customer 6.

be better to deliver customer 10 first and then customer 6. One may have
noticed already that in all our previous updates customer 6 was always
assigned to be delivered last. In our fifth update, however, the MPS = 3
constraint prevents this deferment to continue and customer 6 is finally
given priority over a more favorable customer.

In our example, no more customers appear after customer 10, so the
tentative optimal route will be finally executed. If this were not the case,
our updating process would be indefinitely pursued.

Conclusions and Suggestions for Possible Extensions

We have developed an exact optimization procedure, based on Dynamic
Programming, to solve the “static” and “dynamic” versions of the single-
vehicle, many-to-many, immediate request dial-a-ride problem. We have
examined a generalized objective function and included vehicle capacity
and MPS constraints. The algorithm’s computational effort is (as ex-
pected) an exponential function of the size of the problem, yet asymptot-
ically lower than that of the classical D.P. algorithm when the latter is
applied to a TSP of the same size.

From an implementation point of view (particularly in a “dynamic”
environment) there clearly exists a tradeoff between the fact that the
algorithm is exact rather than heuristic (and hence there are potential
benefits in overall system performance), and the fact that its tractable
problem size is limited due to its exponential growth. Increasing this limit
by algorithm refinements will certainly be a worthwhile effort.

THE DIAL-A-RIDE PROBLEM AND DYNAMIC PROGRAMMING / 153

A number of possible research directions that can be based on (or take
advantage of) the work described in this paper are open. For instance,
one might attempt to further refine the algorithms of this work by taking
advantage of possible geographical proximities of customers. Also, one
might want to test the performance of other heuristic routing algorithms
for the same problem by comparison with that of the exact algorithm.
Third, one might try to use the developed single-vehicle algorithm as a
subroutine for the corresponding multivehicle problem. This has been
attempted recently by the author with only partial success.'! In that
respect, the following issues were seen to be important:

1) The problem of how to partition a given set of customers among a
given set of vehicles seems to be the crux of the difficulty of the
multivehicle problem. The distinction of vehicle stops into origins and
destinations tends to increase this difficulty even more. Thus, various
algorithms developed for the scheduling of vehicles from a central depot
to a number of delivery points do not fit the nature of the many-to-many
multivehicle problem.®"

2) In the “dynamic” case the appearance of a new customer will, in
general, render some already made customer-to-vehicle assignments sub-
optimal. For instance, it may no longer be optimal to keep customer i
scheduled to be picked up by vehicle j after the appearance of customer
k. This reshuffling of customer-to-vehicle assignments in order to avoid
suboptimal solutions will certainly add to the computational effort of a
“dynamic” multivehicle algorithm.

3) Our priority rules should be redefined in a way compatible to the
multivehicle configuration.

4) Concerning the problem’s objectives, one can certainly see that the
problem of servicing all customers as quickly as possible is a minimax
problem. The problem of minimizing total customer dissatisfaction is
certainly a different problem.

ACKNOWLEDGMENTS

THis WORK WAS supported in part by a grant from the U.S. Department
of Transportation, Urban Mass Transportation Administration. The au-
thor is particularly indebted to Nigel Wilson, Christos Papadimitriou,
Jack Devanney and, most of all, Amedeo Odoni for their assistance.

REFERENCES

1. C. H. ParabpimITRIOU, “The Euclidean Travelling Salesman Problem is NP-
Complete,” Theoret. Comput. Sci. 4, 237-244 (1977).
2. N. H. M. WiLsoN aND H. WEISSBERG, “Advanced Dial-A-Ride Algorithms

154 / H. N. PSARAFTIS

Research Project: Final Report,” Dept. of Civil Engineering, M.1.T. Report
R76-20, 1976. ’

3. N. H. M. WiLsoN aND N. J. CoLvIN, “Computer Control of the Rochester
Dial-A-Ride System,” Dept. of Civil Engineering, M.LT. Report R77-31,
1977.

4. N. H M. WiLsoN aND E. MILLER, “Advanced Dial-A-Ride Algorithms
Research Project, Phase II: Interim Report,” Dept. of Civil Engineering,
M.LT. Report R77-31, 1977.

5. D. M. StEIN, “Scheduling Dial-A-Ride Transportation Systems,” Trans. Sci.
12, 232-249 (1978).

6. M. HELD, aND R. M. KaRP, “A Dynamic Programming Approach to Sequenc-
ing Problems,” JJ. SIAM 10, 196-210 (1962).

7. H. N. PsaraFTIs, “A Dynamic Programming Approach to the Dial-A-Ride
Problem,” Dept. of Civil Engineering, M.I.T. Report R78-34, 1978.

8. N. CHRISTOFIDES AND S. EiLoN, “An Algorithm for the Vehicle Dispatching
Problem,” Opnl. Res. Quart. 20, 309320 (1969).

9. C. CLARKE AND 1. WRIGHT, “Scheduling of Vehicles from a Central Depot to
a Number of Delivery Points,” Opns. Res. 12, 568-581 (1964).

10. B. GiLLETT AND L. R. MILLER, “A Heuristic Algorithm for the Vehicle
Dispatch Problem,” Opns. Res. 22, 340-349 (1974).

11. H. N. PSARAFTIS aAND G. G. THARAKAN. “A Dynamic Programming Approach
to the Dial-A-Ride Problem; an Extension to the Multi-Vehicle Case,”
Department of Civil Engineering, M.LT. Report R79-39, 1979.

(Received January 1979)

Copyright 1980, by INFORMS, all rights reserved. Copyright of Transportation
Science is the property of INFORMS: Institute for Operations Research and its
content may not be copied or emailed to multiple sites or posted to a listserv without
the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

