MANAGEMENT SCIENCE
Vol. 36, No. 2, February 1990
Printed in U S.A

ROUTING AND SCHEDULING ON A SHORELINE
WITH RELEASE TIMES*

HARILAOS N. PSARAFTIS, MARIUS M. SOLOMON, THOMAS L. MAGNANTI
AND TAI-UP KIM

Department of Ocean Engineering, Massachuseits Institute of Technology,
Cambridge, Massachusetts 02139
Management Science Department, Northeastern University, Boston, Massachusetts 02115
Sloan School of Management, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139
Kion Technology Inc., Seoul, Republic of Korea

In this paper we examine computational complexity issues and develop algorithms for a class
of “shoreline” single-vehicle routing and scheduling problems with release time constraints. Prob-
lems in this class are interesting for both practical and theoretical reasons. From a practical
perspective, these problems arise in several transportation environments. For instance, in the
routing and scheduling of cargo ships, the routing structure is “easy” because the ports to be
visited are usually located along a shoreline. However, because release times of cargoes at ports
generally complicate the routing structure, the combined routing and scheduling problem is non-
trivial. For the straight-line case (a restriction of the shoreline case), our analysis shows that the
problem of minimizing the maximum completion time can be solved exactly in quadratic time
by dynamic programming. For the shoreline case we develop and analyze heuristic algorithms.
We derive data-dependent worst-case performance ratios for these heuristics that are bounded by
constant. We also discuss how these algorithms perform on practical data.

(ROUTING PROBLEMS; DYNAMIC PROGRAMMING; ANALYSIS OF HEURISTICS)

1. Introduction

In this paper we examine a class of time-constrained vehicle routing and scheduling
problems that may be encountered in several transportation /distribution environments.
Our basic variant assumes one vehicle (initially located at a prescribed point) that must
pick up a number of cargoes, which are located at some other known points. We assume
that each cargo is available for pickup at or after a given earliest pickup time (or, as we
shall refer to from now on, at or after a prescribed “release time”). Given the vehicle is
allowed to wait at any point if doing so proves desirable or necessary, we wish to find
the schedule that will permit us to pick up all cargoes as soon as possible (that is, the
schedule that minimizes the maximum completion time).

As defined so far, this problem is a generalization of the classical Traveling Salesman
Problem (TSP). As such, it is NP-complete, even if the interpoint distance metric is
restricted to be Euclidean (Papadimitriou 1977). In this paper we further assume a
special network topology which we refer to as the shoreline topology. Throughout most
of the paper we also permit a somewhat broader interpoint distance metric, a triangle-
inequality metric, rather than a Euclidean metric (though in places, we assume that
distances are Euclidean). We call this problem SLP (SL for shoreline). The shoreline
network is defined as follows:

An ordered set of points i = 1, ..., n is located on the shoreline if the interpoint
distance matrix [¢,] of these points satisfies the following conditions:

Foralll<i<k=sj=<n,

(i) t; =0,

(i) 1, = L,

* Accepted by Alexander H. G. Rinnooy Kan; received October 1986. This paper has been with the authors
17 months for 2 revisions.
212

0025-1909/90/3602/0212%$01.25
Copyright © 1990, The Institute of Management Sciences

CORYIghT © 2001 All Rights Reserved

ROUTING & SCHEDULING ON SHORELINE WITH RELEASE TIMES 213

(iii) ty = i,

(iv) Iy =ty

(v) Ly <ty + I,

Figure 1.1 shows typical forms of shoreline instances. Note that (a) due to conditions
(iii) and (iv) a shoreline network imposes a topological restriction on the triangle-in-
equality metric, (b) a path along the shoreline need not be convex (i.e., lie on the boundary
of a convex region), (c) given a nonordered set of # points and their corresponding
distance matrix, it is possible to check in O(n?) time whether these points are located
on some shoreline, and (d) a further restriction of the shoreline problem is the straight-
line case that replaces condition (v) by 7, = t4 + & ;.

We have adopted the name “shoreline” because problems with this metric arise in the
routing and scheduling of ships. In these applications, the ports to be visited by a ship
are often located on a (real-world) shoreline (many real-world shorelines obey the def-
inition). In the presence of shorelines, the underlying routing structure is “easy”, in the
sense that in the absence of time constraints the optimal ship schedule is obvious.

However, planners may also have to dcal with earliest and/or latest pickup times at
each port. These times are often independently determined from cargo availability re-
quirements at the land side, and, as such, usually possess little or no “regularity” (for
instance, they need not be monotonically increasing along the shoreline). This lack of
regularity generally destroys the “easy” routing structure and makes the resulting routing
and scheduling problem nontrivial. Similar situations may be encountered in other routing
and scheduling environments.

The literature on vehicle routing and scheduling, in general, and problems with time
windows, in particular, has been growing at an explosive rate over the last few years (see
the comprehensive survey by Bodin et al. 1983). Algorithms for different variants of the
routing problem in the presence of time windows have been developed and analyzed by
Baker (1983), Desrosiers et al. (1984), (1986), Jaw et al. (1986), Psaraftis (1983),
(1986), Sexton and Bodin (1985a, b), Solomon (1986a, b), (1987), and Solomon et al.
(1988), to name just a few. A recent survey is provided by Solomon and Desrosiers
(1988). The literature on applications for the routing and scheduling of ships is consid-
erably less rich, but also growing: see for instance, Psaraftis (1985), Fisher and Rosenwein
(1985) and Ronen (1983).

The scope of this paper is to introduce an important routing structure, the shoreline
structure, examine the complexity of different SLP variants, and design and analyze exact
and approximate algorithms that exploit this special structure.

Without loss of generality, we assume a unit vehicle speed, so that all interpoint direct
travel times, 7, for i, j = 1, .. ., n, equal the corresponding distances. Also without loss

FIGURE 1.1. Typical Shoreline Instances.

Copyright © 2001 All Rights Reserved

214 H. N. PSARAFTIS, M. M. SOLOMON, T. L. MAGNANTI & T.-U. KIM

of generality, as in our previous definition, we number the points according to the order
that they are encountered when a vehicle traverses the shoreline from one endpoint
(point 1) to the other (point 7). Finally, we assume that the vehicle is initially located
(at time ¢ = 0) at point 1. (We shall relax this assumption in §2.) A vehicle schedule can
be represented by an array (C;, Ca, . . . , C,) with C, defined as the completion time (or
visit time) of point i. A point’s completion time is the time that the vehicle departs from
that point, which is not necessarily equal to the time the vehicle may arrive at (or pass
by) that point. Release times r, impose the restriction that C, = r, for all / in a feasible
schedule; note that the vehicle is allowed to waif at a point if doing so proves desirable
Or necessary.

Our objective for this problem is to minimize the maximum completion time, Cpax
= max; C;; that is, complete all visits as soon as possible. Although our basic scenario
assumes that the vehicle does not return to point 1 at the end of its schedule (we call
this basic version the “path” case (pSLP)), we shall also selectively examine the “tour”
case, (tSLP) in which the vehicle returns to point 1 at the end of the trip (and must
arrive there as soon as possible). In all cases, we denote the optimal value of the problem,
that is, the minimum value of Cp,, over all schedules, as Chhax -

We focus on developing algorithms that take advantage of the shoreline structure, in
general, and the straight line structure, in particular. The paper is organized as follows.
In §2, we show that the straight-line variant of the SLP is polynomial by developing an
O(n) exact algorithm for the tSLP and an exact 0(n?) dynamic programming algorithm
for the pSLP, respectively. In §3, we develop several heuristics for the general shoreline
SLP. These heuristics are based on the exact algorithms of §2, which are not necessarily
optimal for the general shoreline case. We derive data-dependent worst-case performance
bounds for these heuristics and show that these are bounded by a constant. We also
discuss how these algorithms perform in practice. Finally, §4 presents our conclusions.

2. The Straight-Line Case

We begin our investigation by analyzing the straight-line case with release times. In
this case, all points I, 2, ..., n to be visited are on a linear segment of length L and no
point i can be visited before a prespecified “release time” 7;. Our basic underlying scenario
assumes that for all i and j, the direct travel time #; from point 7 to point j, is equal to
the corresponding interpoint distance | x, — x;| defined by the x-coordinates x, and x; of
points i and j along the line (therefore L = 1,,,). Note that the straight-line case does not
necessarily require a geometric linear segment, but any metric that can be transformed
to a linear segment, that is, one in which condition ; = ty + f;forall I < i< k=<j=<n
is satisfied. As such, this case can occur in a wide range of applications (railroads, rivers,
highways, or even ship problems where ports are located along a convex hull with land
at the interior of the hull). We begin by assuming that the initial location of the vehicle
at 1 = 0 is at point 1 (later in this section we see what happens when we relax this
assumption).

It is clear that in the absence of release times, or even in the case in which all release
times are “agreeable” (that is r; < r, for all i <), the solution of this problem is trivial:
a straight ““traversal” from point 1 to point # is optimal. However, if the release times
are not agreeable, it becomes less clear what the optimal schedule should be. Figure 2.1
shows a typical schematic representation of a schedule for # = 5 (in the figure the distance
axis is horizontal and the time axis is vertical with time increasing in the downward
direction). As illustrated in this figure, if the release times are not agreeable, the optimal
schedule can be anything but trivial (it may, for instance, involve several direction re-
versals, such as those that occur at points 4 and 6 in the example of Figure 2.1).

Before we solve the basic (“path’) version of this problem in which we do not require

CBPYMORT© 200T ATRIghts Reserved

ROUTING & SCHEDULING ON SHORELINE WITH RELEASE TIMES 215

-
o
(-3

ri=r6=0 1 2 3

r2 hass¥Rp~a

o s s s syt

L] s bbb

L a2 2 2 P PR TPV PPV PYPry

Time

EREE R 2 PO VY LD L LI 2 T U P P P e

PR R LT PP T2 Y e PP

4 frasssssassscssasnsnsssanaas

Qrerrrrorrorrrrrrar

L5 T ~a

FIGURE 2.1. Straight-Line Case: A Typical Schedule.

the vehicle to return to point 1 at the end of the schedule, let us briefly examine the
equivalent “tour” version. If the vehicle is required to return to point 1, the problem
can be solved very easily by the following simple algorithm:

“TRAVERSE” Algorithm (Solves Tour Version)

Step 1. Without waiting at any intermediate point, go straight from point 1 to point
n (that is, arrive at point # at time L).

Step 2. Wait at point z for an amount of time equal to BW,,, = max, [max (0, r,
—L— tin)] .

Step 3. Depart from point » at time L + BW,,, and return to point 1 through point
n—1,n—2,...,2 without waiting at any intermediate point (that is, arrive at point 1
at time 2L + BWp.,).

THEOREM 2.1. “TRAVERSE?” solves exactly the tour version of the straight-line case
in O(n) time.

PROOF. First, the route and schedule produced by the “TRAVERSE” algorithm is
feasible. Indeed, the quantity BW, = max (0, r, — L — 1,,) (see Figure 2.2) is the amount
of time the vehicle would have to wait at point i on its way back from point # to point
1, if the only enforced release time were r;. By waiting at point # for BW, = max; BW;,
the vehicle schedule obeys the condition C, = r; for all i and is therefore feasible.

To see that this schedule is optimal, we note that since it is feasible, its total duration,

Copyright © 2001 All Rights Reserved

216 H. N. PSARAFTIS, M. M. SOLOMON, T. L. MAGNANTI & T.-U. KIM

i —>

FIGURE 2.2. Definition of BW, in “TRAVERSE” Heuristic.

2L + BW,.,, is an upper bound on C¥,,. Hence Chy < 2L + BWya. On the other
hand, C¥*,, cannot be smaller than the minimum trip duration if we ignore all release
times, except the one of point i, for any choice of i. Given that such a trip has a
minimum duration of 2L + BW,, we conclude that C%,, = 2L + BW, for all i, or
C*. = 2L + BWpy. Thus, C¥, = 2L + BWay, and “TRAVERSE” is optimal for
the tour version.

Finally, the O(#) complexity of “TRAVERSE” is obvious.

An O(n?) Algorithm For the Path Version

We now return to our basic (path) scenario: the vehicle need not return to point 1,
but can terminate its route at any point. A cursory investigation shows that although it
is always possible to convert a tour problem to a path problem, the opposite is not
necessarily possible, even if the last point to be visited in the path version is prescribed.
Moreover, although in the tour case the schedule always has a simple pattern, the optimal
schedule in a path problem can be fairly complicated (see Figure 2.1 again).

To motivate the solution approach for this problem, let us first present the classical
dynamic programming recursion that solves the general TSP with release times and then
see how we can exploit the special structure of the problem at hand.

LetN={1,2,...,n},ScNandi €S, 1€ S. Define V(i, S) as the minimum

COPYIIgRTt © 200 T Al RIghts Reserved

ROUTING & SCHEDULING ON SHORELINE WITH RELEASE TIMES 217

time to visit all points in S starting from point 1 and terminating at point i subject to
the release time constraints. Then V' (i, S) obeys the following recursion:

S#{1}: V{4, S) = mir{l {max (7, t, + V(y, S — {i}))},

S={1}:V(1,{1})=r.

This recursion is, in fact, true for any form of distance matrix [£,} and can be extended
to the case that includes deadlines. The computational effort associated with solving this
well-known recursion is exponential: the number of possible subsets S of N is O(2"),
the number of possible states (7, S) is O(#2"), and the overall running time is o(n®2").

As we next show, in the straight-line case we can exploit the problem structure to
reduce the computational effort from exponential to polynomial. The theorem to follow
essentially states that at any time along the optimal schedule the set of visited points is
the union of two disjoint sets S; and .Sy, both of which are “contiguous”: .S, includes all
points from point 1 to point j, and .S; is either empty or includes all points from point
k to point n (see Figure 2.3). The theorem also states that one need consider only points
J or k to represent the last visited point / along the route, for any given S; and S, (or
point j only if S5 = F).

THEOREM 2.2. In the path version of the straight-line case, the dynamic programming
recursion need consider only states (i, S) with i and S defined as follows:

() S=SUS,withS, = {x:1<x<j}and S, = {x:k<x<n} for some indices
Jand k satisfying 1 < j < k < n + 1 (with the convention that S, = & ifk = n + 1).

(b) If'S; = & then i = j. Otherwise, i =jori= k.

PROOF. Let R be an optimal route that does not satisfy properties (a) and (b) of the
theorem. Then at some time ¢ and for some indices j and k, this route will have visited
all points 1 < x < jand k < x < n, but then depart to visit a point p with j + 1 < p<k
— 1. Among all routes that violate (a) and (b), let R maximize 7. Also, let g be the point
in R visited after point p.

At some time ¢’ > £, route R must for the first time visit either point j + 1 or point k
— 1. After ¢’ route R must visit some point / to the left of p followed by a point r to the
right of p, or vice versa (see Figure 2.4). Now consider another route R’ that at time #
travels to point g rather than point p and then waits at point ¢ to depart at the same
time as route R. Route R’ will also visit point p on its way traveling from /to r. Otherwise
R and R’ are identical. (Since #;, = 1, + 1,,, the timing of routes R and R’ coincide after
they both visit /, p and r.)

Now either g = k — 1 or j + 1, or we may repeat the argument and find another route
R” with both p and ¢ visited after time #'. Continuing in this way, we can find another
optimal route R that visits every point J+ 1 <p<k—1after time #. Our assumptlon
that route R maximizes ¢ among all routes that violate (a) and (b) implies that R satisfies
these properties.

Theorem 2.2 implies that the choice of y, the decision variable of the recursion (best
immediate predecessor of i) is limited to at most two alternatives, depending on i: if i

Sy

FIGURE 2.3. Sets S; and S, for the Straight-Line Case.

Copyright © 2001 All Rights Reserved

218 H. N. PSARAFTIS, M. M. SOLOMON, T. L. MAGNANTI & T.-U. KIM

All visited All visited
j 1 r .
t %
&
:
Route R ~ H
Al
N
L) '

‘Route R’
N
L]
.
A
N
ime [\
Al
x
A
N
N
A
N
1l
A
.
Al
\
\
'
A
A
R visits one of !

t 4+ o 4—— (+t)or(k-1)for ———P o
the first time

FIGURE 2.4. The Dashed Line Route Can Replace the Solid Line Route with No Additional Delay.

= j, then vy can be equal to either j — 1 (if S} # {1}) or k (if S, # J);if i = k, then y
can be equal to either k + 1 (if S, # {n}) orj.

As a result of this observation, it is clear that only two indices, j and k, are needed to
represent the set S of the recursion. Consequently, it is possible to rewrite the recursion
asfollows (I <j<k=n-+1):

V{Jj,J, k)
= min {max (r,, 4,1, + V(j— 1,j— 1, k)), max (r;, i, + V(k,j— 1, k))}
Vik,J, k)
= min {max (rg, tes1x + V(k + 1, j, k+ 1)), max (re, t + V(j,j, k+ 1))}
with V(1, I, n+ 1) = ry.

By convention, in the recursion we set ¥(0, 0, k) = V(n+ 1,j,n+ 1) = +oo forall
k>1,j<n.

This recursion can be executed in O(#?) time and the optimal value of the problem
is:

Ct¥.=min V(j,j,j+1)= min V(k, k—1,k)
1<y=n t<k=ntl

The prior arguments are easily extended to examine the case in which the vehicle
starts at time £ = 0 not at point 1, but at some interior point p between 1 and »n. It is
straightforward to see that in the tour case the optimal schedule is a traversal of the form
(p, 1, n, p)or (p, n, 1, p), with the vehicle waiting at points 1 and/or # for the shortest

Copynght © 2001 All Rights Reserved

ROUTING & SCHEDULING ON SHORELINE WITH RELEASE TIMES 219

amount of time that would permit it to return to point p without waiting at any other
point. In the path case, it is also straightforward to see that the optimal schedule always
visits an end point first (point 1 or point #), and then exhibits a pattern similar to the
one examined earlier in this section.

We also mentioned earlier that the classical dynamic programming recursion can be
easily extended to the case that includes (“hard”) deadlines, that is to situations in which
the schedule is required to satisfy the restrictions C, < d, for a prescribed set of deadlines
d, for the points i. One might wonder, therefore, whether a similar extension is possible
for the O(n?) algorithm as well. Unfortunately, the answer to this question is no, since
in the presence of deadlines Theorem 2.2 will not be valid in general. Indeed, if there
are deadlines, feasibility conditions might imply that the route shown as the dashed line
in Figure 2.4 cannot substitute for the one depicted as a solid line. Thus, the general case
that includes deadlines cannot be solved by an obvious extension of the O(#?) algorithm.
Indeed, at this time, the status of the computational complexity of this case is open, and
we conjecture the case to be NP-complete. Special cases with deadlines that are solvable
in polynomial time include (a) the case of one common deadline d, which is solved by
applying the O(n?) algorithm as if no deadline were present and then checking whether
Chax < d (if yes, the O(n?) algorithm produces the optimal solution, and if no, the
problem is infeasible), and (b) the case of nonoverlapping time windows, in which the
points are visited by increasing order of 7,’s (this problem could be infeasible as well, but
checking feasibility requires only O(#) time once we have sorted the r,’s, which requires
O(n log n) time).

An extension to the case in which the vehicle is required to spend a known “service”
or “handling” time of 4, at each point i would encounter similar obstacles. The status
of this case is also open, and we conjecture it to be NP-complete as well.

Having examined the straight-line case, we now consider the shoreline case.

3. The Shoreline Case

In the absence of release time constraints, or when these are agreeable, it is easy to see
that the shoreline problem can be solved optimally by simply traversing the points in
order from 1 to z. In particular, the traveling salesman problem for shoreline problems
without time constraints is polynomially solvable.

On the other hand, as is well known, the Euclidean traveling salesman problem is NP-
complete even in the absence of time windows (Papadimitriou 1977). Nevertheless, the
computational complexity of the general shoreline case with release times remains open
at this time. In the following discussion, we shall design and analyze approximate algo-
rithms for its solution.

3.1. Worst-Case Analysis of Heuristics

In this section, we present a class of simple heuristics and we derive data-dependent
worst-case performance ratios for them. We also show that these ratios are bounded by
constants. For this purpose, let us first introduce some notation. Let v, =2]k: Ir i1 DE
the travel time along the shoreline between i and j, 1 < i < j < 1. Denote the length of
the shoreline, v,,, by S. In addition let L = t;, denote the length of the direct segment
between point 1 and point n. Furthermore, define FW, = max {0, i — vy, } and let
FWax = MaX, <<y FW,. The quantity FW; is the amount of time the vehicle would have
to wait at point / when traveling along the shoreline from point 1 to point n, if r, were
the only release time constraint enforced. Let also BW, = max {0,,— L —v,}and
BW o = max, <<, BW;. Finally, let b represent a point on the shoreline for which BW,
= BWrax- Note that these latter quantities are the extensions to the shoreline case of the
similar quantities defined in §2. We now present a class of heuristics for the shoreline
problem.

Copyright © 2001 All Rights Reserved

220 H. N. PSARAFTIS, M. M. SOLOMON, T. L. MAGNANTI & T.-U. KIM

The (Tour) “TRAVERSE” Algorithm

This procedure is the same one we discussed in §2 as an exact algorithm for the straight-
line case; “TRAVERSE” is not necessarily optimal for the general shoreline case. Its
computational complexity is still O(7); the following theorem establishes its worst-case
behavior.

THEOREM 3.1. The “TRAVERSE” algorithm has a worst-case performance ratio of
28/(S+ L).

PROOF. First note that CL,. = BWa. + L + S, where CL,, is the value of the
“TRAVERSE” heuristic. If BWqa = 0, then CL,, = L + S = C¥,4, ie., the “TRA-
VERSE” heuristic is optimal. Assume now that BWp,, > 0.

Let the tSLPA be a relaxation of the tSLP with no release time constraints. Consider
also the problem tSLPB which is a tSLP with only three points: point 1, with r; = 0,
point b with 7, > ry; and point n with 7, = 0. Then CEux (4) = L + Sand CRax (B) =71
+ t15, where C%,, (A4) and C%, (B) are the optimal completion times for the tSLPA and
tSLPB problems, respectively. Since Ck,, = max {Cha(A4), Cha(B)} = max {L
+ Sty + t1p} and CL, = BWpax + L + 8 = 13, + vy, we obtain

CT [Chu < (rp+vyp)/max {L+ S, 1+ tip}.
Assume first that L + .S = 7, + 5. Then
Clax/Chax < (np + v1p) /(L +8) < (L + 8 — t1p + v15)/(L + §)
=1+ (vp— tp)/(L+S).

Since S — U1y = Upn = lpn = L — 1, we conclude that Chay /Chax < 1 + (S — L)/(L
+8)=2S/(L + S). Assume now that L + .S < r, + t15. Then

Clax /| Cax < (1 + 01p)/(rp + t1p) < 1 + (v1p — t1p) /(L + 8) <25/(L + 5).

Therefore, the ratio CL.y /C¥ax is bounded by 2S/(L + S).

To show that this bound is tight, we need consider only an example with r; = 0 for i
=1,...,n—landr,=S.

Note that if S/L = 1 (the straight-line case), then the “TRAVERSE” algorithm’s
worst-case performance ratio becomes 1, i.e., this method solves the problem exactly.
We have already proved this result in §2.

Consider now the path problem. The “TRAVERSE” algorithm for the path problem
consists of two parts, each generating a different tour: in the description, Steps 1, 2, and
3 constitute part 1 and Steps 4 and 5 constitute part 2.

The (Path) “TRAVERSE” Algorithm

Step 1. Go straight from point 1 to point 7.

Step 2. Wait at point # for an amount of time equal 10 BWna = max, {max {0, r,
— L - Uin} } .

Step 3. Visit all the points sequentially from point # to point 2. The total duration
ofthe tripis L + .S — £12 + BWax-

Step 4. “Wait at point 1 for an amount of time equal to FW pax.

Step 5. Visit all the points sequentially from point 1 to point 7. The total duration
of the trip is FWhax + S.

The value of the heuristic is Chax = min {L + S — ti12 + BWpax, FWiax + S}.

Note that in Step 4, by waiting for F W, at point 1, the vehicle is certain to visit all
the points on or after each point’s release time. The following theorem specifies the worst-
case behavior of this heuristic.

oY 20U T AT RIS e ETved

ROUTING & SCHEDULING ON SHORELINE WITH RELEASE TIMES 221

THEOREM 3.2. The “TRAVERSE” algorithm solves the path problem in O(n?) time
and its worst-case performance ratio is min {2(L + S)/3L, (45 — L)/2S }.

Since the proof is similar to that of Theorem 3.1, we will omit it (the reader may refer
to Kim 1985 for more details).

The worst-case performance ratios we have derived are data-dependent. Specifically,
they are strictly increasing functions of S/ L. This ratio can be thought of as a measure
of how far a given shoreline is from the straight line (for which S/L = 1). Furthermore,
it is easy to see that these worst-case performance ratios are bounded by the constant 2,
which means that the relative error of these heuristics cannot exceed 100%.

3.2. Computational Performance of Heuristics

In this section we summarize the results of a computational study of several heuristics
for the “path” version of the problem. The heuristics examined include the “TRAVERSE”
algorithm described earlier and what we call the “ZOOM” heuristic. This heuristic is the
dynamic programming algorithm developed for the straight-line pSLP. It is easy to see
that this algorithm is not necessarily optimal for the general shoreline case. However, its
worst-case performance cannot be worse than that of the “TRAVERSE” heuristic, since
the “ZOOM?” heuristic always checks all the paths considered by the “TRAVERSE”
heuristic.

Our computational experiments have been conducted within the context of cargo ship
scheduling. We have first established a travel time matrix on a real-world shoreline. The
number of points considered was # = 8, 10, 20, 30. All travel time matrices satisfied the
shoreline requirements but were not Euclidean. The corresponding .S/ L ratios were 1.986,
2.055, 2.075 and 2.60. Then, for each port on the shoreline we have generated random
release times that are mutually independent and uniformly distributed between 0 and
Ruax, Where Ruay is a user-specified parameter. For each given R, value, we have
created 10 problem instances for each problem size. To simulate different degrees
of tightness for the release times, we made a series of runs with five different values
for Ryax.

The computational experiments were carried out on an IBM PC and on a SANYO
MBC-555 which are personal computers with 256 K RAM. The largest problem for
which we were able to obtain the optimal solution was 7 = 8. In the other cases, we used
a lower bound on the optimal value given by max {.S, max; #;}. This bound is, in many
cases, very loose.

The computational performance of the “ZOOM” heuristic (average over the 10 prob-
lems instances for each Ry, value) seemed to be consistently very good for any range
of release times and any problem size even though the underlying routing structure was
far from the straight line. For n = 8, the algorithm never deviated more than 10% from
the optimal value, with the average error around 4%. For > 8, the algorithm performed
better for the upper range of release times for which it was within 20% of the lower bound
in most cases. For the lower range of release times, the deviations were larger (up to
54%), but this result might be attributable to the looseness of the lower bound rather
than to the performance of the algorithm. As expected, “TRAVERSE” was consistently
inferior to “ZOOM?”, but never by more than 10% (and about 6% on the average).
Further details on these runs and additional approaches we have considered can be found
in Kim (1985).

4. Conclusions

In this paper we have introduced a class of single-vehicle routing and scheduling prob-
lems with time constraints. These problems share one common feature: because of their
special topology, in the absence of time constraints, they are trivial to solve. We have

Copyright © 2001 All Rights Reserved

222 H. N. PSARAFTIS, M. M. SOLOMON, T. L. MAGNANTI & T.-U. KIM

introduced the “shoreline” topology, a generalization of the straight-line case and a re-
striction of the triangle-inequality case, and have focused on the problem of minimizing
C.ax (the time the last point is visited), subject to “release time” constraints. For the
straight-line case we have seen that this problem can be solved exactly in O(n?) time by
a dynamic programming algorithm. For the shoreline case we have presented some heu-
ristics and analyzed their worst-case and practical performances.

The problems examined in this paper are members of a much broader family of prob-
lems, each having a different objective function, type of distance matrix, and constraints.
For instance, instead of minimizing Cpax We might wish to minimize 2. C;, the sum of
completion times (or, equivalently, the average completion time). Or, we might also
impose deadlines (or time windows) on the times each point can be visited. The pertinent
question is whether the results of this paper can be extended to these other variants.

Kim (1985) carried out a cursory investigation to answer this question. He describes
ataxonomy of 28 different variants of this problem class, broken down by type of objective,
type of distance matrix and type of time constraints. His analysis provides reducibility
relationships among these variants, and a preliminary examination of their complexity.
The analysis of many of these variants is still inconclusive, for the complexity status of
many of them is still open. To our knowledge, the only variant among this class that is
provably NP-complete is the problem of minimizing 2 C, on a straight line, subject to
time window constraints on each point (release times and “hard” deadlines). This result
is due to a transformation from the “traveling repairman problem,” examined by Afrati
et al. (1986). As with machine scheduling problems, the resolution of exactly which
among this class of problems are polynomially solvable and which are NP-complete is
an effort that would probably require a nontrivial number of man-years to complete (not
to mention the many more extensions, such as the multi-vehicle case, that could be
considered). We think that such a research effort would be worthwhile for two reasons.
First, from a practical perspective, in many routing and scheduling situations, the im-
position of time constraints destroys a relatively simple routing structure. Second, from
a more theoretical perspective, progress in this area would shed more light on the exact
location of the boundary between problems in P and NP-complete problems and would
enhance the state of the art in routing and scheduling of vehicles with time windows (in
itself an already rapidly growing area).'

' Work on this paper was supported in part by contract No. N00016-83-K-0220 of the Office of Naval
Research, by an internal grant of the MIT Center for Transportation Studies, by an internal grant from North-
eastern University’s Research and Scholarship Development Fund, and by Grant # ECS-83-16224 of the National
Science Foundation.

References

AFRATI, F., S. COSMADAKIS, C. PAPADIMITRIOU, G. PAPAGEORGIOU AND N. PAPAKOSTANTINOU, “The Com-
plexity of the Travelling Repairman Problem,” Information Theory App!. (France), 20 (1986), 79-87.

BAKER, E., “An Exact Algorithm for the Time-Constrained Traveling Salesman Problem,” Oper. Res., 31
(1983), 938-945.

BODIN, L., B. GOLDEN, A. ASSAD AND M. BALL, “Routing and Scheduling of Vehicles and Crews: The State
of the Art,” Computers and Operations Res., 10 (1983), 62-212.

CHRISTOFIDES, N., A. MINGOZzZI AND P. TOTH, “State-Space Relaxation Procedures for the Computation of
Bounds to Routing Problems,” Networks, 11 (1981), 2.

DESROSIERS, J., F. SOUMIS AND M. DESROCHERS, “Routing with Time Windows by Column Generation,”
Networks, 14 (1984), 545-565.

. Y. DuMAS AND F. SouMis, “A Dynamic Programming Method of the Large-Scale Single-Vehicle Dial-
A-Ride Problem with Time Windows,” Amer. J. Math. and Management Sci., 6 (1986), 301-325.

FISHER, M. AND M. ROSENWEIN, “An Interactive Optimization System for Bulk Cargo Ship Scheduling,”
Working Paper, 85-08-07, University of Pennsylvania, 1985.

GAREY, M. AND D. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-Completeness,
W. H. Freeman and Company, San Francisco, 1979.

COPYITORT © 200T AT RIGHS Reserved

ROUTING & SCHEDULING ON SHORELINE WITH RELEASE TIMES 223

JAw, J., A. ODONI, H. PSARAFTIS AND N. WILSON, “A Heuristic Algorithm for the Multi-Vehicle Advance-
Request Dial-A-Ride Problem with Time Windows,” Transportation Res., 20B (1986), 243-257.

KM, Tar-Up, “Solution Algorithms for Sealift Routing and Scheduling Problems,” PhD. Dissertation, Mas-
sachusetts Institute of Technology, 1985.

LENSTRA, J., A. RINNOOY KAN AND P. BUCKER, “Complexity of Machine Scheduling Problems, Studies in
Integer Programming,” Annals of Discrete Mathematics, 1 (1977), 343-362, North-Holland Publishing
Company, Amsterdam.

PAPADIMITRIOU, C., “The Euclidean Traveling Salesman Problem is NP-Complete,” Theoret. Comput. Sci.,
4 (1977), 237-244.

PSARAFTIS, H., “An Exact Algorithm for the Single Vehicle Dial-A-Ride Problem with Time Windows,” Trans-
portation Sci., 17 (1983), 351-357.

> “Scheduling Large Scale Advance Request Dial-A-Ride Systems,” Amer. J. Math. and Management

Sci., 6 (1986), 327-367.

, J. ORLIN, B. BIENSTOCK AND P. THOMPSON, “Analysis and Solution Algorithms of Sealift Routing
and Scheduling Problems: Final Report,” Working Paper, No. 1700-85, Sloan School of Management,
MIT, 1985.

RONEN, D., “A Review of Cargo Ships Routing and Scheduling Models,” European J. Oper. Res., 12 (1983).

SEXTON, T. AND L. BODIN, “Optimizing Single Vehicle Many-to-Many Operations with Desired Delivery
Times: 1. Scheduling,” Transportation Sci., 19 (1985a), 378-410.

AND , “Optimizing Single Vehicle Many-to-Many Operations with Desired Delivery Times: I1.
Routing,” Transportation Sci., 19 (1985b), 411-435.

SOLOMON, M., “Algorithms for the Vehicle Routing and Scheduling Problem with Time Window Constraints,”
Oper. Res., 35 (1987), 254-265.

, ““On the Worst-Case Performance of Some Heuristics for the Vehicle Routing and Scheduling Problem

with Time Window Constraints,” Networks, 16 (1986a), 161-174.

, “The Minimum Spanning Tree Problem with Time Window Constraints,” Amer. J. Math. and Man-

agement Sci., 6 (1986b), 499-421.

» E. BAKER AND J. SCHAFFER, “Vehicle Routing and Scheduling Problems with Time Window Constraints:

Efficient Implementations of Solution Improvement Procedures,” In Vehicle Routing: Methods and

Studies, B. Golden and A. Assad (Eds.), North-Holland Publishing Co., Amsterdam, 1988.

AND J. DESROSIERS, “Time Window Constrained Routing and Scheduling Problems: A Survey,” Trans-

portation Sci., 22 (1988), 1-13.

Copyright © 2001 All Rights Reserved

