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Some New Aspects of Slamming Probability Theory

Harilaos N. Psaraftis’

A systematic investigation of some probabilistic aspects of slamming is presented. This investigation in-
cludes the assessment of the unconditional probability of slamming at a random instant of time; the estima-
tion of the conditional probability of slamming at a given instant after a particular slam; and the consequent
rejection of the hypothesis that slamming is a Poisson process. In addition, a procedure to approximate
the distribution of slamming interarrival times? is presented. Finally, new slamming statistics, obtainable
from the theory of this work, are presented and compared with the existing slamming criteria. The theory
of this paper can be readily applied to other seakeeping events such as deck wetness, keel emergence,

and propeller racing.

Introduction

SLAMMING STUDIES can be classified into two equally important
categories:

(a) Hydrodynamic and structural analyses of the impact
phenomenon itself.

(b) Probabilistic and statistical analyses of the occurrence of
that phenomenon.

Without trying to underestimate the importance and implica-
tions of a hydrodynamic and structural analysis of slamming, this
paper belongs to the second category. In this respect it will in-
vestigate the slamming problem, starting from the very simple
question of “how often” slamming occurs and proceeding with
more subtle issues on the mechanisms governing the process.

Szebehely [1] and Tick (2] assume a ship to be slamming in an
interval of time (¢, t + dt) if, during that interval

1. theship keel at a prescribed location (the slamming station)
is just entering the sea surface,

2. the relative vertical velocity between ship and sea surface
at the slamming station is greater than a critical velocity v, and

3. the relative angle between keel and sea surface at the
slamming station and at the instant of keel entry is “small.”

Today the most widely accepted probabilistic slamming model
requires only the first two conditions to be true; so does the theory
developed in this work.

The slamming station is taken to be in the vicinity of the forward
perpendicular, usually at Station 1, LBP /20 aft of the forward
perpendicular. The value of vg, the so-called “threshold velocity,”
is usually taken to be 12 fps (3.657 m/s) for a vessel of 520 ft (158.5
m) LBP (Ochi [3]). For different ship lengths, Froude-law scaling
is suggested. Aertssen [4] suggests a value of 18 fps (5.486 m/s)
for a 520-ft ship length.

In order to be in a position to extract slamming statistics from
the model just described, the following assumptions are also
made:

1. The wave elevation at any point and at any instant is a sta-
tionary, narrow-band, zero-mean Gaussian random variable.

2. The ship is a linear, time-invariant system for which the
input is the sea excitation and the outputs are the ship motions.

A consequence of these assumptions is that all the ship motions
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are also stationary, narrow-band, zero-mean Gaussian random
variables. The same holds for the relative vertical motion and the
relative vertical velocity between the ship and the sea surface.
Also, the joint probability density function of any number of these
variables (even of variables separated by a time interval) is a
multivariate Gaussian one.

The theory that follows assumes also long-crested unidirectional
irregular head seas. This assumption is made only to match the
conditions of the full-scale slamming measurements on the SS
Wolverine State [8] and therefore causes no loss of generality.

Slamming probabilities: unconditional and
conditional

From [2, 3, 5| the a priori (unconditional) probability of the ship
slamming in the interval (¢, t + dt), where t is random and dt
small, is shown to be equal to dP = Adt, where

A= \/ﬂl e—1/21k2/A0)—ug?/¥"(0)] (1)
27 ¥(0)
where
= draft at slamming station
vp = threshold velocity
Y(t) = autocorrelation function of relative vertical motion
X,(t) between sea surface and ship at slamming
station
= ‘Jﬂ cosw,t | Ry(we)| %S (w)dw
0
w?V
we = w + —— = frequency of encounter for head seas
V = ship speed
Ri(w.) = complex response amplitude operator of X,(t)
g = acceleration of gravity
S(w) = energy density spectrum of seaway

Primes in equation (1) denote time differentiation and ¥(0) and
—y”(0) are the variances of X,(t) and X,(t), respectively.

Slamming was assumed by Ochi [3, 6] to be a Poisson process
with parameter A. A consequence of this assumption is that the
probability mass function (PMF) for r, the exact number of slams

in an interval of T, is given by

{'AT)re-J\T
R =0,1,2...and T >0
P(r,T) = v TR LS 2)
0 otherwise

4 Derivations of formulas for A\ when all three conditions of slamming
are taken into account are presented in references [2, 5].
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it was felt, however, that a ship cannot slam more frequently than
its natural calm-water pitch period t.. Therefore, Ochi modified
the exponential probability density function (PDF) of the
Jamming interarrival times that would hold for a Poisson process
{7l

Ae ™M =0

fue) = [0 t<0 ®)
as follows:
=At=t
pr= T T @

From a theoretical point of view, however, using (1) in both (2)
and (4) would create a complication. This can be understood from
\he fact that while (4) implicitly forbids more than two slams to
occur in a time interval shorter than ¢ ,—in fact, regarding such
an event impossible—equation (2), on the other hand, explicitly
allows any number of slams in any time interval, with a finite
probability, even if this interval is shorter than t..

It should be mentioned at this point that the value of A used by
Ochi to test (4) was not the one suggested by equation (1), but
simply the one that was derived from the experimental data itself,
namely, the number of slams divided by the time interval during
which the observations took place. These observations were made
aboard the SS Wolverine State [8).

Concerning now the validity of (2) for the slamming process,
it turns out that there is a fundamental properlﬁ that a Poisson
process has and it is not obvious at first glance whether this property
belongs also to slamming or not. This is the ““no memory’ prop-
erty, namely, the mutual independence of arrivals. To check
therefore the validity of (2) for slamming, we have to check
whether slamming has memory or not.

Our approach to check this will be to test if the conditional
probability of a slam in (¢, t + dt), given a slam at time zero, is still
equal to Adt. If it is, this would mean that the occurrence of a slam
at T = 0is irrelevant for the probability of a slam thereafter. Since
this is synonymous with lack of memory, we conclude that
slamming will be a Poisson process if and only if the foregoing

Let us name this conditional probability o(t)dt.
To evaluate ¢(t), we further define event A(t) as the occurrence

of aslamin (t, t + dt). Then
o(t)dt = problA )] (0) = LU

prob{A(0)}
Earlier we saw that problA(0)} = prob{A(t)} = Adt. Expressing

the conditions for A(t) mathematically, for some instant of time
rin (t,t + dt), we have

()

A(t): {Xu(r) = —kand Xa(7) 2 vo}

where X,(t) is the relative vertical motion between the sea surface
and the ship (positive when bow is down) and Xa(t) = Xi(2).
Examining what happens at t and at t + dt, we note that

X,(t) < —k (bow has not touched the surface)
and that

X,(t + dt) = —k (bow is already in the water)

If dt is small
X,(t + dt) = X,(t) + Xo(t)dt
and
Xa(t) Z vo
So
At): |=k — Xo(t)dt < Xy(t) = —k and Xo(t) = vo}

Then (5) yields

#(t)dt = ﬁfi prob{—k — Xo(T)dt < Xy(T) < —k

and Xo(T) = vofor T =0and ¢t} (6)

The four random variables in the brackets, £1 = X41(0), £5= X (t),
£5 = X2(0), and £ = Xat), have a four-variate joint Gaussian dis-

tribution, F4(£1, £o. £3, £4).

conditional probability is equal to Adt. So, equation (6) yields
Nomenclature
A(t) = event: aslam occurs in time interval (¢, t + dit) P(r.,T) = Poisson PMF for r, the exact number of arrivals in an
B(t) = event: no slam occurs in time interval (dt, t) interval T
C = covariance matrix for multivariate Gaussian PDF Ri(we) = complex response amplitude operator of Xi(t)
C-! = inverse of C S(n;l = energy density spectrulm of seaway
. t = time instant or interva
= fC ’
D B delerm:;ant © ‘ . t. = natural calm-water pitch period of ship
E(x) = expected value o random variable x to = most probable slamming interval
f(t) = PDF for time interval between two successive T = mean period of response spectrum of X)(t)
slams . o V = ship speed
filt) = exponenthlal PDF for time interval between two vo = critical velocity for'slamming
successive slams X,(t) = relative vertical motion between sea and ship at
fi*(t) = Ochi’struncated PDF for time interval between two slamming station
successive slams Xolt) = dX,(t)/dt
Fn(Xy, X3, ... Xy) = N-variate joint Gaussian PDF )\ = a priori slamming probability per unit time, slam-
g = acceleration of gravity ming frequency of occurrence
H1/3 =_significant wave height ":I = (i,j)th element of C .
k = draft at slamming station ol = (i Jth element of C
LBP = | . 0. = standard deviation of random variable =
= length between perpendiculars L
_ . r = time instant
probl. . .} = probability &(t) = per unit time probability of a slamat T =~ ¢ i
= sla ~ t givena
pn(T) = probability of N slams separated from each other by Pt:lam atT gpo Y g
an interval <T Ut) = autocorrelation function of X(t)
PDF = probability density function (for continuous vari- @ = circular wave frequency
ables) we = frequency of encounter
PMF = probability mass function (for discrete variables) wp = frequency of spectral peak
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(t)dt

1 (= (= -k -k
=S LS Flakakdedadeds,
or, finally

o0=3 J7 7 tFi-kkistddbdss ()
F4is given by (see [9])

Fy(§1,62,85.84) = W

where ¢/ are the elements of C~1, the inverse of C, the covariance
matrix of £1,£2,£3,£4, and D is the determinant of C.

Application of linear systems analysis to ship responses [5] yields
that the elements oy; of C are given by

o1 = o022 = Y0) 014 =041 = V()

13 =03 =04 =042 =0

e—1/2T 41Tt tikso!

012 = 021 =Y(t) o093 =032 = —Y/(t)
ogs = 044 = —¥"(0) o034 = 043 =—y"(t)

It can be seen that the method used to derive the expression for
¢(t) (7) is similar to the one used by Longuet-Higgins [10] for the
derivation of the conditional probability of a stationary random
Gaussian variable having a zero crossing in (¢, t + dt), given that
it had one in (0, dt). In fact, the zero crossing problem is a sub-
problem of the slamming problem, which is a —k crossing problem
tor X;(t) under the further restriction that each —k crossing has
to have X1(t) = vo.

Figure 1 represents a picture of ¢(t) derived by numerical
evaluation of (7) for the Wolverine State, Voyage 288, Interval
58 [8] (see the Appendix). One can clearly note that ¢(t) is far
from being a constant equal to A, as it ought to be if slamming were
a Poisson process. It can be seen, therefore, that slamming cannot
?lﬁﬂnﬁd&r&d as a Poisson process and consequently (2) cannot

(alle B

Since slamming is not a Poisson process, (4) cannot hold either,
because (4) was derived by modification of the interarrival time
PDF of a process which was assumed to be Poisson. The fact that
(4) cannot hold was to be expected because a ship in irregular seas
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Plot of ¢(t) for the SS Wolverine State (Voyage 288, Interval 58); A was calculated from equation (1) to be 0.032 s~

may do anything but pitch regularly at its natural calm-water pitch
period. Incidentally, experiments aboard the Wolverine State
[8] showed five out of 117 slamming intervals being shorter than
the natural calm-water pitch period of the ship.

From the shape of ¢(t) it can be seen that ¢(t) tends to A for large
values of . This property was also to be expected because no
correlation exists between seaway events separated by a long time
interval. So the fact that a slam has occurred at T =~ 0 may be
very important for the likelihood of another slam 10 s later, but
it is completely irrelevant for the probability of a slam after 10 min.
So the conditional probability should converge to the a priori
(unconditional) probability.

An analytical verification of this property is the following:

Ast — = y(t) and its derivatives tend to zero. So the only
nonzero elements of C are g1, = 92 = ¥(0) and o33 = g44 =
—¢”(0). With such a decoupling, it is easy to see that the double
integral in (7) is A%, where A is given by (1). So

p(t)—Aast —>

The exact behavior of ¢(t) as ¢t — 0 is more difficult to determine
because at t = 0, C becomes singular. The reader is referred to
[10, 11] for methods to overcome such difficulties. In this work
we will contend ourselves with the results from the calculations
we made, which show ¢(t) to be very small at small ¢'s. This also
should have been anticipated, for it seems very unlikely (but not
necessarily impossible) to have another slam very close to the slam
at T = 0.

For intermediate values of ¢, ¢(t) is seen to oscillate. This means
that the ship is more likely to slam again at integer multiples of
some characteristic period to namely, #o, 2tq, 30, etc., and less
likely at ¢o/2, 3t0/2, 5t9/2. This “periodicity” tends to die off as
t increases, as the correlation of seaway events separated by a
longer time interval gets weaker.

The time interval between two successive slams

Let f(t) be the PDF for the slamming interarrival time. arlios
we saw that f(¢) is neither an exponential (Poisson) PDF (1) ns
an Ochi-truncated PDF (4). Here we will see how we can estinmate
f(t) from the information we have so far.

The problem of finding f(¢) of a random function, whethes &
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Fig. 2 Comparison of the histogram of the distribution of slamming intervals for the SS Wolverine State (Voyage 288, Interval 58) with the PDF obtained
using equation (13), the exponential PDF (3), and Ochi's PDF (4) with t, = 7.2's. All PDF’s use A = 0.032 s—!

means interval between successive slams or interval between
successive zeros, up-crossings or down-crossings, maxima or mi-
nima, has many physical applications which can be found in studies
of electrical circuits, microseisms, irregularities in the ionosphere,
sea waves, etc. However, a survey of the relevant literature
(10-14] reveals that only approximate solutions have been found
even in the most simple case of Gaussian variables.

A first-order approximation of f(t) is simply ¢(¢). This ap-
proximation is valid for small values of ¢ only [14]. In fact, if ¢ is
small, aslam in (¢, ¢ + dt) is most likely to be the first one after the
one that occurred in (0, dt). Nevertheless, it can be seen that this
approximation violates the fundamental probability axiom, be-
cause [g(t)dt is not equal to unity.

In tl;is paper we give an improved, second-order approximation
for f(¢).

Let us, in addition to the already defined event A(t), define
event B(t) to signify the absence of a slam between T = dt and T
=t. Then, from [7], we have

prob{B(t)A(¢)|A(0)} = prob{B(t)| A(0)prob{A ()| A(0)B(2)] (8)
If the slam that occurred in (0, dt) is the zeroth slam, then

prob{B(t)A(¢)| A(0)} = probftime interval between
zeroth slam and first slam
is between t and ¢t + dt}

= f(t)dt (9)
Also,

prob{B(t)| A(0)} = probifirst slam will occur
later than ¢ after zeroth slam|

- _j: " f(x)dx (10)

The probability prob{A(t)|A(0)B(t)} [conditional probability
of aslamin (¢, ¢ + dt) given a slam in (0, dt) and no slam in (dt,
t)] cannot be expressed in closed form. In this paper we will ap-
proximate this probability with ¢(¢)dt, that is

probiA(t)| A(0)B(¢)} = problA(t)|A(0)} = ¢(t)dt (1)
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Putting (9), (10), and (11) into (8), we end up with an integral
equation for f(t):

OETON e (12
The solution of (12) which obeys the condition
J; f(t)dt =1
is
_ [#(t)e=Toelxdz ¢ >
f)= l 0 ) 20 (13)

We can see that for small values of ¢, (13) reduces to the earlier
established first-order approximation f(t) ~ ¢(t).

Figure 2 is a plot of f(t) derived for the Wolverine State, Voyage
288, Interval 58, by numerical application of (13). In the same
figure one can see the histogram of the slamming intervals obtained
from the observations aboard the ship [8] and also the exponential
and Ochi-truncated PDF’s for a process with parameter A derived
using (1). Ochi’s PDF was conditioned at 7.2 s, the natural
calm-water pitch period of the ship. One can see the good
agreement of (13) with the histogram.

Also, one can note the similarity of f(¢) (Fig. 2) with ¢(t) (Fig.
1) when t is small. This similarity disappears at large ¢’s.

Atlarge t’s, ¢(t) = A for t > t;, so that f(¢) behaves like Ae—*
where

A = AeM1—S§'¢dx = constant

It is interesting also to note that (13) reduces to (3) or (4) de-
pending on the appropriate choice for ¢(t). For a Poisson process,
substituting ¢(¢) = X into (13) yields immediately (3). For an
Ochi-truncated process, ¢(t) = A for ¢t = ¢. and zero otherwise, and
we end up with (4).

Approximations of higher order than (13) are given by Rice [14],
McFadden [11], and Longuet-Higgins [10]. In references [10, 14],
f(t) is given as an infinite series and in [11] as a convolution integral.
We note that the computational effort associated with these
higher-order approximations can be substantial.
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Fig. 3 Two slamming statistics: (&) most probable slamming interval
to, and [shaded area in (b)] probability of a slamming interval shorter than
T

Application of properties of the Laplace transform of f(t) (7]
can yield the expected value E(t) and variance o7 of the slamming
interarrival times. If f(¢) obeys (13), then (see also [5])

E(t)= J;w e~ Fltidt (14)
o2=2 J; " te~Fi0dt — [E(t) (15)
where, by definition
i
F)= [ oxds (16)

Selecting a meaningful slamming statistic

The traditional statistic used for slamming predictions is the
expected value of the number 7 of slams in a given time interval
T.

For this statistic to be useful, one would also need some infor-
mation about o, since any prediction based only on averages could
be misleading. Now o, would be readily obtainable if slamming
were considered a Poisson process. Then we would have E(r) =
AT and o, = VAT . But slamming is not a Poisson process and
therefore we cannot use the foregoing formula for a,. It turns out
that it is very difficult to extract g, for a non-Poisson process. E(r)
can still be calculated [5] but having only E(r) as a statistic would
not be of help.

Fortunately, it is not necessary to proceed to fulfill this goal, since
it is difficult to relate E(r) and g, to the captain’s decision to reduce
speed or change heading because of slamming. There are other
statistics more closely connected to that decision and which are
readily available from the theory of this work.

For example, St. Denis [15] suggested as a criterion for slamming
the likelihood of the occurrence of a closely spaced succession of
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slams. This criterion is consistent with the captain’s reactions when
the ship experiences slamming. A captain will reduce speed if the
ship encounters, say, three consecutive slams at short intervals.  If
such a succession happens, he will reduce speed or possibly change
heading right after it, rather than maintain speed in order to count
the exact number of slams in a prescribed time interval and then
react.

A first statistic connected to the slamming interarrival time is
the most probable slamming interval to. It is the time interval
corresponding to the first (and highest) peak of f(t), or, since f(t)
z( #(t) when t is small, to the first (and highest) peak of ¢(t) [Fig.
3(a)].

Thus, a ship displaying an f(t) curve with a small value of ¢o will
be more susceptible to rapid slam successions than a ship for which
to has a large value.

The results of the calculations for the Wolverine State (Ap-
pendix of [5]) showed that to was in the close vicinity of T, the
mean period of the response spectrum of the relative motion at the
slamming station. This result may establish a convenient rule of
thumb for o since T can be obtained in closed form:

- —40)
T=2x \/
¥7(0)
Another useful statistic is the probability that the ship will en-
counter two successive slams in a time interval shorter than a
known interval T. This is equal to the shaded area in Fig. 3(b),
or

(17)

T
pam) = " fi0)de 18)

It can be seen from Fig. 2 that both the exponential (Poisson)
and the Ochi-truncated PDF s tend to underestimate this proba-
bility because at small ¢’s they are not as peaked as the f(t) derived
in this work and the histogram ordinates.

If we assume that slamming interarrival times are mutually
independent, then we can extend equation (18) to more slams. For
example, the probability that a sequence of N slams separated from
one another by an interval smaller than T is

pn(T) = [pAT)¥! N=234... (19)

This assumption implies that slamming has memory only up to
the previous slam. This hypothesis reminds us of a Markov process
where the memory of the process extends only one step into the
past [7]. A similar assumption was made by McFadden [11].

If this assumption is dropped, px(T) can be obtained in a more
complicated way using higher-order interarrival time PDF’s.

This last criterion (19) has the closest correspondence to the
suggestion of St. Denis [15] than any criterion encountered so
far.

What proved to be a surprising property of the theory presented
in the foregoing was the fact that the location of the maxima and
minima of ¢(¢) turned out to be independent of the value of k and
the assumed value of the threshold velocity v [5]. The results that
substantiate this statement are shown in Fig. 4.

This result enhances the value of tg as a slamming statistic.
Estimates of o can be obtained using [17] (since to =~ T) without
the uncertainty associated with vg. Of course, for more infor-
mation about the process, k and vy are highly important and should
not be ignored.

A complete sensitivity analysis of all the parameters affecting
slamming is presented in [5].

Conclusions

This work has focused on three interrelated issues:

1. The investigation of whether or not slamming is a Poisson
process: In this respect, the conditional probability of slamming
per unit time was considered and the Poisson hypothesis wus
consequently disproved.
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of H'? = 28 ft (8.53 m) and w,, = 0.725 rad/s assumed, and a ship speed of 2 knots

2. The extraction of the distribution of the slamming inter-
arrival times: An approximate solution was presented in this paper
and was shown to compare favorably with experimental data.

3. The recommendation of more meaningful slamming sta-
tistics: It was felt that these statistics and the underlying theory
behind them can be used for a better assessment of the perfor-
mance of a ship in a seaway.

The procedures for the extraction of f(t) vary in their degree
of accuracy and computational effort. It was seen that f(t) can
provide information leading to new and more meaningful
slamming statistics. In particular, the most probable slammin
interval tois a valuable statistic since it is easy to compute (17) ang
is independent of vg and k.

The theory presented in this paper can be similarly applied to
every other seaway event that can be characterized with the ex-
ceedance or crossing of prescribed levels of random seakeeping
variables. Deck wetness, keel emergence, and propeller racing
are three events that fit into this category.

Finally, the approach of this work can be readily extended to
non-head unidirectional or even short-crested multidirectional
seas.
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Appendix

Data used for experimental verification

The data of Voyage 288, Interval 58, of the SS Wolverine State
[8] were chosen to test the theory of this work. This interval was
chosen because at that time the ship was slamming the most.

It was decided [Appendix D of [5]] to represent the seaway
spectrum as a superposition of the following two spectra:

(a) A Bretschneider spectrum of H/2 = 21.64 ft (6.59 m) and
wp = 0.725 rad/s. This spectrum accounts for the energy in the
“sea’”’ component of the seaway.
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(b) A Bretschneider spectrum of H'/% = 30.44 ft (9.27 m) and
wp = 0.567 rad/s truncated so as to be valid only between 0.378
and 0.685 rad/s. This spectrum accounts for the energy in the
“swell” component of the seaway.

The slamming station was taken to be at the low-pressure
transducer LP21, 228 ft (69.49 m) forward of amidships. This
transducer was used in [8] to detect slamming intervals.

The critical velocity v was assumed equal to 11.715 fps (3.57
m/s), which is what Ochi’s Froude scaling hypothesis yields for
a ship of 496 ft (151.18 m) LBP.

Head seas and a forward speed of 3.38 fps (1.03 m/s), which is
what was recorded in the data log (2 knots), were assumed.

The M.LT. five-degree-of-freedom seakeeping program was
used to provide the ship responses for heave and pitch.

The values of ), ¢(t), and f(t) were computed from equations
(1), (7), and (13) respectively. All spectral integrations involving
Y(t) were truncated at seven times the frequency of the “sea”
spectrum peak. This truncation scheme was tested in reference
[5], Appendix C, and was found satisfactory.

Forty-three slams were detected in a duration of 1210s. The

corresponding 42 slamming intervals are (page 9 of [8]) (sec-
onds);
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11.4 8.0 8.5

8.0 25.0 79.5
39.1 66.5 51.0
28.9 21.0 9.0

8.2 62.0 8.0
4]1.2 45.5 8.0
414 85 10.0

9.5 8.0 7.0
155 8.5 55.0
30.5 127.5 10.0
20.0 15.0 14.0
16.0 90.0 7.0
36.0 7.5 9.0

7.5 31.5 10.0

The histogram of the distribution of these intervals appears in
Fig. 2.

The average number of slams resulting is either 43/1210 = 0.035
slams/second or 43/1134.4 = 0.038 slams/second, depending on
what is the total time interval considered (75.6 = 1210 = 1134.4
was the interval from the time the experiments started up to the
first slam). Application of (1) yielded A = 0.032 slams/second.
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