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The basic problem in ocean acoustic detection is formulated under the assumption of unsaturated 
sound propagation. The latter essentially amounts to a constant signal plus Gaussian noise. 
Detection is defined as occurring whenever p, the root mean square pressure at the receiver, 
exceeds a specified threshold level Po- A two-state, discrete-time Markov model is derived, and 
closed-form expressions for the probability mass functions of the number of time steps separating 
two successive detections (interarrival time} or one detection and the first subsequent 
"downcrossing" {holding time) are presented. Expressions for the joint probability density 
function ofp at two different points in time are obtained and used to determine the relevant one- 
step transition probabilities of the Markov model. Sample results using the model are finally 
presented. 

PACS numbers: 43.00.Cg, 43.30. Bp, 92.10.¾z 

INTRODUCTION 

In general, the quadrature components of the envelope 
of a narrow-band ocean acoustic multipath process are given 
by I 

N 

x = Irn cos 0. + 
(1) 

r = Z (r. sin 0n + 
where 

N = number of independent paths between source and re- 
ceiver, 

r n = the amplitude of the hth path, 
0, = the phase of the nth path 
N(• n•, .N• "! = zero-mean, uncorrelated Gaussian additive 

noise for the nth path. 

Furthermore, the envelope and the phase of the total signal 
are defined as: 

,O -• (X 2 q- 
• = tan-'(Y/X). (2) 

At short ranges and low frequencies, or for stable channels, 
the propagation is said to be unsaturated and the probability 
density function (PDF) ofp is Rician 2 and independent of the 
number of paths.' (In Sec. I the distributions ofp and its 
phase • are presented.) 

At sufficiently long ranges and/or high frequencies, the 
propagation is fully saturated, which means that •b, the phase 
of p, can be characterized as a random variable uniformly 
distributed between 0 and 2rr, or each path has a phase 
that is normally distributed with a standard deviation > 2rr. 
In this regime when N>4 and the single path amplitudes r, 
are approximately equal, phase random multipath propaga- 

tion is obtained. It has been found 3-s that the envelopep of a 
fully saturated phase random process with additive Gaus- 
sian noise obeys a Rayleigh PDF. Moreover, several other 
statistics and joint PDF's for the phase random process have 
been obtained, and are presented in a comprehensive sum- 
mary by Mikhalevskyfi 

In intermediate ranges,. where the signal experiences 
enough perturbations in the channel so that each 0n can be 
characterized as a Gaussian random variable but with a stan- 

dard deviation < 2•r, partially saturated propagation is ob- 
tained. The frequency/range boundaries between the un- 
saturated, partially saturated, and fully saturated regimes 
are dependent upon the ocean dynamics or boundary dy- 
namics of the propagation channel, as well as the magnitude 
of any relative source-receiver motion. In Ref. 1, the enve- 
lope statistics for signals in the partially saturated regime 
were presented. As the variance of the single path phase goes 
to zero, or becomes large, the PDFs converge to the unsatu- 
rated and fully saturated results, respectively. Z2 

In previous publications 7'a of the authors, continuous 
and discrete-time detection models using the results of phase 
random acoustic propagation z-6 have been formulated. "De- 
tection" was defined as an uperossing of random variablep 
(the root mean square pressure at the passive sonar receiver} 
over a gpe½ified threshold Po. A continuous-time model was 
first developed for obtaining the PDF's of the time between a 
detection and the first subsequent downcrossing through Po 
(holding time). The model was then compared with the ex- 
tensively used (A, •r) model and with available acoustic data. 
This model was seen to exhibit similar long-term behavior 
but markedly different short term characteristics as com- 
pared with the {X, (r) model, a fact which is due to the mem- 
ory of the process. Comparison with data has demonstrated, 
in most cases, a significantly improved prediction capability 
over the (g, (r) model. 
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Subsequently, a two-state model and a four-state dis- 
crete-time Markov detection model were developed, and 
closed-form expressions for the probability mass functions 
of the corresponding interarrival and holding times were de- 
rived. The results obtained using the latter models were fa- 
vorably compared with both the continuous-time models 
and the data, the greatest improvement over the continuous- 
time models lying in the much lower computational effort 
involved. 

The purpose of this letter is to develop acoustic detec- 
tion models for the unsaturated case. Such models are de- 

rived in the following section, first for the memoryless case 
and then for the general "memory" Markov case. A model 
has also been proposed 9 for the partially saturated case, but. 
results are yet to be confirmed in other than limiting cases. 

I. ANALYTICAL FORMULATION 

The probability density functions for the root mean 
square pressurep and its phase • for the unsaturated process 
are derived in Ref. i. The density ofp is Rician: 

/dp)=exp Io , 0<p<oo, 
where 

Rs = the magnitude of the constant signal vector, 
I o = modified Bessel function 0fthe first kind of zero order, 
o• = No•. = No•N,, where 
c•, o•, = the variances of N• "• and N("• respectively, as 

defined in the introduction. 

The density of 4 is' 

M2 4• Ms 

where 

p•,/z, = the quadrature components ofRs (R • = p2• + #•2), 
and 

• {x) = err{x) ---- • f• exp( -- t z)dt. 
7;o 

In our previous Markov modeling of the phase random 
process (fully saturated sound propagation), a two-state 
model and a four-state model were developed. ?-a Compari- 
son with data has revealed that both models, when properly 
calibrated, yield very satisfactory results, the two-state being 
consistently as accurate as the four-state model s 

We will henceforth restrict ourselves in developing a 
two-state Markov model for the unsaturated process of the 
general form shown in Fig. 1, 

where "U" ---- "up" state, defined by P>Po, 
"D" ---- "down" state, defined by p < p, 
a = prob(p• <poLo,>po), 
b = prob(p•>po• <Po). 

1-b 

U• 1-a 
FIG. 1. Two-state discrete-time Markov model. 

In the memoryle ss case, a + b = 1, and 
a = prob(p: <Po[P,>Po) = prob(pz <Po•, <Po) 

= prob( p• <Po} 
or 

a = p•lp = 1 -- Q, ,-- (6) 
o' N 

with f•(p) as in (3), and the generalized Q-function is de- 
fined'øas 

/14--1 ..[_ 

Qst(a, fi) = f• •(•-) exp( ct• •-)IM_,(a•t •, 
M = 1, 2 ..... (7) 

I.t can be shown that 

1- Q,(ct, fi ) = exp( a2• fi•-) 
•o (a2/2)t, i ( • 2/2)" X•o k! n! (8) n=k+l 

Rappaport •ø presents several approximations for Q and its 
complement, which is less cumbersome to evaluate exactly 
in the computer than using (8). Note: Rice 2 presents the equi- 
valent result: 

(9) 

where 

l,x)= x "' x • 1 ß k !(n + k )! 

From (9), we can proceed to evaluate the probabilit• 
mass functions for the interarrival aad holding time. In gen- 
eral, these PMF's take the form a 

P.(k ) - (1 - a) •- •a, k = 1,2,...(holding time), (10) 
P, ln) = lab/is -- b )] [(1 - b )"-' -- (1 - a)" 
n = 2, 3 .... (interarrival time). (11) 

In the memoryless case, (11) becomes 

a(1--a)[(1--a)"-•--a"-'], n=2,3 ..... P,(n) = (1 -- 2a) 
(12) 

In the nontrivial case (a + b • 1) of the Markov model 
of Fig. 1, the calculation of the transition probabilities re- 
quires knowledge of the joint density function f•o:(p,, P2), 
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wherep, = p(t }andp2 = p(t + T}.Thissecond-orderdensity 
has already been derived in a rather general form by Middle- 
ton's II treatment of the statistical properties of additive nar- 
rowband signal and normal noise processes. 

Using Middleton's results, and after extensive algebraic 
manipulations, we obtain 

P• P= exp Pl P2 

- Xexp(. x,•(1 + ro)) 
ß z [. rolP= h 
., o [,4{1 -- 

o2•{1 + g)] \o•{1 + ro)]' 
(13) 

It is reasonable to expect that (13) will reduce, for t-• oo, to 
the product of•, (pl).f•_.{ p•), i.e., 

Assuming ko-*O for T--•oo {uncorrelatedness}, {13} gives 

f•,.•{p,,p•}•p,.nP=exp(_ P• +Pl + 2Aao) 

Since l.•{x} = {x/2)• >! 0; 
•o m! L 1, 

Eq. (15} can be rewritten as 

fp,.mlPl,P•}--)) Pl exp( 
X exp( 

m90 
06) 

m-•0, 

P• + A •.•iof Aop, • P2 

i.e., f•"P'(P•'P•) 
We can now proceed to evaluate the one-step tr•sition pm- 
bab•ities of the Markov m•el. 

P12=a= • •,•{p•,p2•pldp2/•7•(p}d p {18} 
p•t = b = • •,• (p,,p=•p, dp2/•ø•(p•p (19) 
{•d Pll = 1 -- Pl=, P== = 1 -- P2•}- 

The double Nte•s in {18} and {I9} c• • ev•uated as 
functions of 

Althou• • is symmetdc with •s•t •p• andp2, it •not 

be expressed as a product of one function ofp • and one of p2. 
Instead, we can rewrite {20}, taking {13} into account, as fol- 
lows: 

•o ø Pl exp( 
4• ½po}JJo pa 2o2•{1 

x •-_ o •"' \ •(1 -po •) ! 

xL'(&(1 +pg)! \&(1 +•)J 
In the above, Ao is identical to Rs of •. {3}. 
Having eval•ted 2•, •s. (18M19} mn • expressed as 

•,= = (F• - •,)/(1 - p•), (22) 

•, = l - •,/P•, (23) 

. where P• is the {un•nditional probability of p being !•s 
than Po- Effo•s to simplif• the evaluation of 
were not su•sful. The double numerical integration of a 
function invol•ng the infinite sum of p•ucm of •r• 
m•ffi• B•I functions was ex•ct• to and did actuaH7 
pr•u• computational problems {exc•sive CPU time}. 
•ese were pami•ly alleviat• using the asymptotic pro•r- 
fi• ofthe B•sel functions involv• in detemining the toler- 
an• employ• in teminating the evaluation of the infinite 
summations. Still, for extreme {that is, t• sm•l or t• large} 
de•ction thresholds, the computational effo• is una•pta- _ 
bly large. However, •is is not exp•t• to • a problem in 
practice since we do not ne• to use such extreme thruh- 
olds in fact, they result in memoryless Markov m•els, 
and the problem d• not exist, since the evAration of the 
relevant one-step transition probabi•ti• just requir• the 
•owledge of the uncondition• distributions. 

II. IMPLEMENTING THE MODELS 

The results obtained using our model with a variety 
of--fictitious but hopefully appropriate---inputs for the pa- 
rameters involved, namely o•, v, R s, the time step, and the 
detection threshold.'2 

Figures 2-3 present typical results using • = 1.58, R s 
= 2.23, (R • = 5.} v = 0.2 Hz, a time step of 0.4 s, and 
thresholds ofpo = 1.58. o2• and R s were picked from an 
unsaturated example,• and the rest were chosen by the auth- 
ors and are more or less arbitrary. It is seen 12 that, although 
the density ofthe holding time is very sensitive to the magni- 
tude of the detection threshold, the density of the interarri- 
val time is much less so, being almost independent of the 
threshold. This reminds us of what we would get in a pure 
sinusoidal signal situation, where we have a constant interar- 
rival time {equal to the period of the sinusoidal signal} but 
different holding times for each threshold. Such a result was 
not observed in our previous study of the detection process 
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FIG. 2. Holding time, po = 1.58, T= 0.4 s, Rs = 2.23. 

using thephase random model for ocean propagation. s In the 
unsaturated case, p is obviously not a strict sinusoid and, 
hence, we do not get the above 6-function densities for the 
interarrival and holding times. However, we also show •2 
that the timing of detection events (i.e., the density of the 
interarrival times} is almost independent of the detection 
threshold. This threshold makes its presence felt only in the 
densities of the holding time, in which we quite obviously 
have shorter holding times for higher thresholds. We have 
also obtained results •2 demonstrating the relative insensiti- 
vity of the above results to changes in the time step T. 

IlL CONCLUSIONS 

In this letter, an analytical model for the unsaturated 
acoustic detection process was presented, and probability 
mass functions for the interarrival and holding times were 

O.lq 

O. 12 

0.1œ 

0.0• 
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0.00 
O, 3. 6, 9. 12. 15. 18. 21, 2q. 
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FIG. 3. Interarrival time, po = 1.58, T= 0.4 s, R s = 2.23. 

derived. The unsaturated mode of acoustic propagation was 
seen to exhibit different characteristics than the previously 
developed phase random acoustic detection models. A ma- 
jor difference between these two modes of acoustic propaga- 
tion lies in the narrower (for the unsaturated case) distribu- 
tion of p, which approaches a normal density as R s grows 
large. A more striking difference lies in the relative indepen- 
dence of the interarrival time PMF to the detection thresh- 

old Po for the unsaturated case, a property not observed in 
the fully saturated models. 
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