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The basic problem of the ocean acoustic detection process is formulated analytically under the assumption of 
fully developed saturated phase random multipath acoustic fluctuations. Detection is defined as occurring 
whenever p, the root-mcan-square pressure at the receiver, exceeds a specified threshold level p•, Two 
models, one exact and one approximate, are developed for obtaining the probability density functions of the 
time between two successive detections and of the time p is above P0 {holding time). The two models are 
compared with one another and with the extensively used (2,. •r} model. One of the reasons that the latter 
model has a limited success in practice is the inability to estimate the appropriate value for 2,, a parameter 
which is determined empirically. In this paper we have derived an appropriate value for 2,, in terms of v {the 
single path root-mcan-square phase rate), •r• (half the long time average mean-square pressure at the receiver) 
and Po (the threshold level). Using this equivalent value for ,t, we observe that our exact and approximate 
detection models exhibit similar long-term behavior but markedly different short-term characteristics as 
compared with th• (,t,a) model. This is due to the memory of the process, a property that cannot be 
accounted for in the (,t,a) model. A comparison of these models with data obtained from various field 
experiments demonstrates, in most cases, an improved capability over the (2.,a} model. 

PACS numbers: 43.60.Cg, 43.30.Vh, 92.10. Vz, 43.30.Bp 
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INTRODUCTION 

Much of the work in the area of acoustic detection in 

the ocean has traditionally been based on the so-called 
(X, o) model characterized by the "relaxation t•me" 1/X 
and the standard deviation a of the "signal-to-noise ra- 
tio. "•.a Use of this model relies heavily on parameter 
estimation from field experiments without application of 
the relevant physical and probabilistic structures of the 
process. 

This situation has been improved recently by the ef- 
forts of several authors. The work of Dyer, '• Dyer and 
Shepard, • Hamblen, • and Mikhalevsky •-• resulted in an 
increased comprehension of the fluctuation character- 
istics of underwater signals. Under the assumption of 

a fully developed saturated multipath phase-random 
field, probability distributions for several random var- 
iables such as p, •, A, •, 9, and • (see symbol list) 
have been determined. In addition, many jolnt proba- 
bility distributions have been derived. 

The work described in this paper represents an at- 
tempt to apply the knowledge obtained by these recent 
findings in the area of ocean acoustic detection when the 
phase random multipath model applies. Specifically, 
the new knowledge of the probabilistic characteristics of 
acoustic fluctuations has enabled us to develop two new 
detection models, one exact and one approximate. The 
methodology used is essentially the same for the two 
models, the only difference between them being the 
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shape of the detection boundary in the quadrature com- 
ponents plane. It should be made clear that from a 
methodological point of view, the phase randomness as- 
sumption is not binding for the formulation of our de- 
tection models. The approach that will be presented 
sheds some light into the second-order statistics of 
fading channel and is equally valid for any other expli- 
citly defined probabilistic process for ocean fluctua- 
tions. For the purposes of this paper, we chose to ap2 
ply our approach to the phase random model. 

Defining detection events as upcrossings of the ran- 
dom variable p through a specified threshold level 
the exact model regards detection vents as outward 
crossings of the vector whose components are x = p cos• 
and Y=O sin•b (the quadrature components of p), with the 
periphery of a circle of radius Po centered at the origin 
of the (x,y) plane (q5 :phase). The approximate model 
replaces the circle with a square whose side is a func- 
tion of O0. The motivation for the development of the 
approximate model has been to increase computational 
efficiency with respect to the exact model. 

In contrast to the (X, •) model, which is memoryless, 
both our models explicitly incorporate memory charac- 
teristics. As a result, the argument that it is very un- 
likely to have two detections separated by a very small 
time interval is demonstrated quantitatively. The same 
holds for the argument that two detections separated by 
a sufficiently long time interval are essentially uncor- 
related. This is done by deriving expressions/or the 
probability distributions of the time interval between 
two successive detections (subsequently referred to as 
the "interarrival time") and Of the time interval for 
which p is above P0 (subsequently re/erred to as the 
"holding time"). The approach used for obtaining this 
derivation is essentially the same as that which was 
used successfully by Psaraftis lø for a seemingly unre- 
lated, yet strikingly similar problem (that of a ship 
slamming on a random sea surface). 

It should also be emphasized at the outset that our 
definition of detection as an upcrossing of p implies that 
two successive detection events are separated by a time 
interval during which 0 >• P0 (holding time) followed by 
loss of detection and by another time interval during 
which p < 00 (time to regain detection once holding is 
lost). 

Our models are compared with fluctuations data avail- 
able from Woods Hole and from the CASE experiment. 
Comparison with the data highlights the similarities and 
differences between the exact, the approximate, and the 
(k, a) models. In that respect the following conclusions 
seem important: 

(1) One of the reasons that the (X, a) model has a lim- 
ited success in practice seems to be the inability to 
estim. ate the appropriate value for X, a parameter 
which is determined empirically. In this paper we have 
determined an appropriate value for •, in terms of the 
single path root-mean-square phase rate u, the stand- 
ard deviation al of p, and the threshold level P0. It 
should be made clear that all comparisons of the (;•, 
model with our models and with data in this paper are 

done using the above "equivalent" value for X. The use 
of this "equivalent" value for ), instead ot an empirical 
and arbitrary value is considered necessary if one is to 
perform a fair test of the (X, c) model with data. 

(2) Both our models exhibit a short-term behavior 
markedly different from that of the (X, c) model. In that 
respect, it is shown that the detection process has very 
strong memory characteristics for short time inter- 
vale. For instance, our analysis demonstrates not only 
that it is very unlikely to have two detections very close 
to one another, but that the most probable time interval 
between two successive detections is, depending on the 
threshold level P0, of the order of 0.3/r to 0.4/r (in 
seconds, if v is measured in Hz). Also, the most 
probable holding time is seen to be of the order of 0. 
to 0.2/v. These results are in sharp contrast with the 
(X, a) behavior, (especially if r is small), where there 
is a finite likelihood for two detections to be separated 
by a very small time interval and where the most prob- 
able interarrival and holding times are (unrealistical- 
ly) equal to zero. 

(3) Both our models exhibit a long-term behavior 
similar to that of the (k,(•) model. In that respect, two 
detections separated by a sufficiently long time interval 
are, as in the (X, 6) model, uncorrelated. Further- 
more, our quantitative analysis shows that the "decor- 
relation interval" (i.e., the interval above which no 
correlation between detections exists) is, in general, a 
function of the selected threshold level P0, and of the 
order of 0.4/r to 0. 

(4) The substitution of the circular detection boundary 
by a square represents a very good approximation. 
Thus the approximate model produces predictions which 
are essentially similar to those of the exact model and 
are obtained at a lower computational effort. 

The paper is organized as follows: 

Section I presents the analytical formulation of the de- 
tection problem under the assumptions of stationarity 
and phase randomness. Unconditional and conditional 
probabilities of detection are defined and their relation 
with the PDF's of the interarrival and holding times 
discussed. 

Section H describes how these PDF's can be estimat- 

ed from the conditional probabilities of detection. 

Section III presents the application of this method to 
the case of the exact detection model, for which the de- 
tection region is a circle. 

Section IV is devoted to a similar analysis concerning 
the approximate detection model for which the detection 
region is a square. 

Section V briefly describes the currently used (X, (•) 
model, and derives an appropriate value for •. 

Section VI presents some results of the comparison of 
our models, as well as the (X,(•) model, with data. 

Section VII provides a relative evaluation of all three 
models, and summarizes the main conclusions of this 
work. 
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I.-DETECTION PROBABILITIES: UNCONDITIONAL 
AND CONDITIONAL 

In this paper, detection at time t is defined as an up- 
c•ossing event for random variable p, through a speci- 
fied threshold level P0, as follows: 

P(t)=00, b(t) >•0. (1) 
An exactly equivalent criterion involves the random 
variable A = 10 log10p 2, stated as fol10ws: 

^(t) =^0, o, (2) 
with A0 = 10 log10P0 2. 

We first proceed to determine what we call the uncon- 

ditional probabilitity of detection, which we denote from 
now on as )•dt. This is by definition the probability that 
(1) is satisfied at some instant of time in the interval 
(t,t+dt) where t is random and dt is small. 

The evaluation of Xl dt is quite straightforward: Con- 
sidering the interval (t, t+dt) we can say that (1) im- 
plies that p(t) •<Po and that p(t+dt) •Po. Since dt is 
small, p(t + dt) -• p(t) + j(t)dt. Hence 

=at f•-'o •fo ;(P0, • )d• , (3) 
wheref•,;(p, •) is the joint PDF for p and •. From 
Longuet-Higgins i• and Hamblen 5 we have 

f•, ;(P, • ) = [ p/(2u) TM ZalS ,]exp(-p2/2cl= - 
Substituting the above into (3) and performing the inte- 
gration, we find that 

X• = [ pou/•t (2u) TM 2]exp(-o0z/2c•12), (4) 
where r is in units of rad/s and Xl is •he average num- 
ber of detections (or "arrivals") per unit time. This 
result was first obtained by Dyer and Shepard 4 and Mik- 
halevsky. s 

• From now on, we will call X i the "unconditional de- 
tection rate" or the "per unit time unconditional proba- 
bility of detection." Relation (4) means that k 1 depends 
on the selected threshold level P0, on Cry2 and on •, in a 
Rayleighlike law. 

In order to quantitatively examine the memory of the 
detection process, we proceed to examine what we call 
the conditional probability of detection, which we sym- 
bolize from now on•with •(t)dt. This is by definition the 
probability •hat a detection occurs at some instant of 
time in the interval (t, t + dt), given a detection oc- 
curred at time 0. It should be made clear that thq 
above mentioned detection in (t, t + dr) is not neceSsari- 
ly the first one after the detection at time 0. 

To evaluate •(t)dt we proceed as follows: 

• (t)dt = prob [detection at t•e (t, t+ dr) I detection at t•e (0,dr) ], 
_ prob(detection at tz and detection at t•) 
-- prob(detection at t•) ' 

I / 
/ 

I 

I (small t) -• II (Intermediate t) III (large t) 

FIG. 1. Expected behavior of • (t). 

where fq.•2.;li;2(pt, P2, •i, •z) is the joint PDF of 
Pt, P2, Jl, J2 (subscripts I and 2 refer to t/mes 0 and t, 
respectively). We then find that 

kl -0 -0 

From now on we will call •(t) the "conditional detection 
rate" or the "per unit time conditional probability of de- 
tection." Again, it should be made clear that •(t) is not 
a PDF. 

We can evaluate •(t) according to (5) if the form of 
f•1.•2.;•.;2 is known. The corresponding analysis is pre- 
sented in Secs. II and III, of the paper. For the mo- 
ment, we present some qualitative arguments about the 
anticipated form of •(t), .arguments which will be seen 
to be confirmed by the quantitative analysis in later 
sections. To begin with we anticipate the existence of 
a "decorrelation time," which can be thought of as the 
time t o following a given detection after which the con- 
ditional probability of detection equals the unconditional 
probability, or, in other words, the existence of a de- 
tection at time 0 does not affect the probability of a new 
detection at time greater than t 0. Therefore, as t • •, 
we expect •(t)-- k• (Fig. 1). On the other hand we do 
not expect to have a second detection immediately after 
the first one, since it will, in general , take a finite 
time for our signal to drop below the threshold, and 
then rise above it again. Therefore it can be argued 
that •(t) will be very small as t--0, and this is also 
shown in Fig. 1. For intermediate values of t, the 
form of •(t) cannot be predicted by such qualitative ar- 
guments: Both shapes in Fig. I have been obtained for 
certain values of the threshold level, using our new de- 
tection models. 

II. PROBABILITY DISTRIBUTIONS OF THE 
INTERARRIVAL AND HOLDING TIMES 

We will use the term "interarrival time" to denote the 

time between two successive detections. (For instance, 
tls and ta5 in Fig. 2. ) The exact evaluation of the PDF 
of the interarrival time seems to be very difficult. 
Longuet-Higgins, ll Rice/• and McFadden is have pre- 
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FIG. 2. 

i 

Definition of interarrival and holding times. 

time 

sented several approaches to this problem in the gener- 
al context of axis crossing of random functionsß We 
propose here the technique used successfully by Psaraf- 
tis, tø which states that a good way to approximate the 
above PDF is by the function 

•(t)exp(- f0'•(x)dx)' t>0, 
r(t) = (6) 

0, t•<0, 

where •(t) is obtained from (5). F(t) is different from 
•(t) in two respects: First; F(t) is a PDF whereas •(t) 
is not [f%F(t)dt= 1, whereas ]• •(t)dt--oo]. Second, 
F(t) refers to the time between two successive detec- 

tions, whereas •(t) refers to the time between any two 
detections. For small t, F(t) -• •(t), because a detection 
which occurs within a very small interval after any giv- 
en detection, is most likely to be the first one after that 
given detection. Equation (6) is consistent with this ar- 
gument, since as t--O, • •(x)dx--0 and hence F(t) 
- 

We now define "holding time" to be the interval be- 
tween any upcrossing through the threshold P0 and the 
first downcrossing through P0 that follows. (For in- 
stance, tt2 and ts4 in Fig. 2.) In a similar fashion to 
the one used to derive (6), the holding time PDF can be 
approximated by the function 

(-/0') •(t)exp •00r)dx , t>0, = (7) 

n(t) (o, t-<o, 
where ½(t) is the per unit time conditional probability of 
a downcrossing through P0 at time t given an upcrossing 
through P0 at time 0. It is straightforward to see that 
½{t) can be estimated by the following relation 

0(t) 

(8) 

The next two sections present methods for evaluating 
•(t) (5) and ½(t) (8). An exact method (See. 1II) and an 
approximate method {See. IV) are developed. 

and 

III. EXACT EVALUATION OF •(t) AND •(t): THE 
"CIRCLE" MODEL 

The determination of the interarrival and holding time 
PDF's exhibits a nontrivial complexity. Whereas rela- 
tions (4), (6), and (7) are trivial to evaluate, this is not 
the case with relations (5) and (8), which give the condi- 
tional probabilities •(t) and ½(t). The reason is that the 

joint PDF inside the integralsf•p•,;t,;,(pi , •, jr, j2) is 
itseft difficult to evaluate. 

In principle, we can obtain the above joint PDF by in- 
legration as follows 

where •e integrand is the eight-dimensional joint PDF 
of the amplinde p, its rate j, the phase • and its rate 
• at times 0 (subscript 1) •d t (subscript 2) and is giv- 
en •4 by 

......... ) 
Pl P 1 , = exo 

where 

•1 

U2 =Y2 

x•=p•cos•i 

y•=p•sin• 
ß (12) 

•( = f•cosq•(- 

for •=1, 2; Here D is the determinant of •, the covari- 
ance matr• of the (Gaussian) four-dimensionM PDF of 
the x's (or y's): 

f.. •.;v ;• ½1, x2, ;•, •) 
1 

and •Y is •e (•j)th element of •-•. 

Using this formula, (9) can be reduced to a sidle En- 
tegral, wEth r = • - • be• the EntegraUon var•le. 14 
•(t) and •(t) can then be obt•ned by •o more •n•egra- 
•ions., over • and b•, from (5) and (6), respectively. 
Thus the exact evaluation of each of ((t) and •(t) in- 
volyes •e execution of a to•l of three nested numerical 

integrations. Reference 14 provides a de•led •scus- 
s•on of •e behavior of the •(t) •d •(t) curves pre•cted 
by •e exact model I• is seen there that •1 •(t) and 
•(t) curves exh•bR the same behavior for t large 
enough, reacMng •e limiting value of • (t)= •(t)= X• 
= uncondit•on• probab•lRy rate of detection, for t • •. 
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In practice, this limit is reached for a value of time 
between 3/2•v and 4/2•v (p in Hz) for all threshold lev- 
els examined. These values are the decorrelation 

times for the corresponding thresholds. For t • 0 we 
have •(t) and •(t)--0. Section VI will show us how well 
the exact model compares with the data available to us, 
and also whether it could be substituted by the approxi- 
mate model to be developed in the following section, or 
even by the currently used (k, •r) model. 

IV. APPROXIMATE EVALUATION OF •(t) AND •(t): 
THE "SQUARE" MODEL 

The analysis of Sec. HI has provided some hints about 
the possible computational difficulties that the imple- 
mentation of the exact model would bring up. This has 
given us the initiative to try to formulate an approxima- 
tion to that model, possibly by replacing the "exact" 
definition of detection by some other suitable detection 
criterion. Denoting as before the quadrature compo- 
nents of p by x--/) cosq5, y -- p sinqb, our original, exact 
detection criterion means that the vector p crosses out- 
wards the periphery of a circle of radius P0 in the 
plane [Fig. 3(a)]. We can approximate the above circle 
by a square of side 2x 0 [Fig. 3(b)]. Detection will now 
be redefined as a crossing outwards across the bound- 
ary of the square instead of the circle. We may choose 
x0 as a function of P0 using a variety of criteria, TM the 
best of which is to fix x0 =f(o0) so that both detection 
criteria (square and circle) give the same unconditional 
probability of detection. The approximation will, of 
course, cause the corresponding conditional probabili- 
ties to be generally different. A method for estimating 
these conditional probabilities will be presented here 
for the case of the "square" boundary. 

Let A, B, C, D be the four sides of the square [Fig. 
3(b)] and let us define the four (mutually exclusive) 
events At, Bt, Ct, D, to signify the outward-Crossing Of 
the vector p at the corresponding edge, within (t, t + dr). 
Therefore detection at (t, t + dr) is the event (A t + B 
+ C, +D t) with "+" denoting "or" in probability lang- 
uage. For the unconditional probability of detection in 
(t, t + dr), we have dP = k 1 dt = prob(A o + B o + C 0 + D o) = 4 
prob(A0). It is straightforward to show TM that, in terms 
of x0, •q can be given by the following formula 

Xi -• (2p/•r)[2• (x0/v l) - 1] exp(-x0Z/2(•2), (13) 
! 

x 0 x 0 

0 ' • I I 
(a) (b) 

FIG. 3. Exact and approximate detection criteria. 

where $ (•) is the standardized cumulative normal den- 
sity function. 

For the conditional probability •(t)dt of a detection in 
(t, t + dr) given a detection in (0, dr) we have 

• (t)dt = prob[(A, + B, + C t + Dt) l (,4 0 + B 0 + Co + Do)] 

= prob(A 0 'A t +A 0 ß B• + A 0 ß C• +A 0 ß Dt)/prob(Ao), 
(14) 

with "'" denoting "and" in probability language. Then 
• (t)dt = prob(A, IA 0 ) + prob(B• IA 0) + prob(C, IA 0) 
+ prob(D t IA 0) and since contributions from B and D in 
(t, t + dr) have to be equal (if p crosses edge A at t-- 0) 
due to the existing symmetry of our configuration, we 
have 

• (t)dt =prob(A, I A 0) + 2 prob(Bt JA o) + prob(C• I A0). 
(15) 

The various events in (15) are mathematically defined 
as follows (with subscripts 1 and 9. referring to times 0 
and t, respectively) 

Ao:xi=xo; •l•0; 

At:xi=xo; :•z • O; 

Bt:y•=xo; •>•0; 

{ya{ xo; 

xo; 

Ct:xa=-Xo; •a-<O;. {ya[-<Xo. 

Taking each term separately, and knowing that prob(Ao) 
= Xl tit/4, we have 

(i) prob(AttA o) 4at f" f• xlx•fxi.•z.;q.;•z(Xo, Xo, Xl,•z)d•td•, f•o f•l"i(Y•'Y')dytdY'' (16) • ß f$0 XO •1 •2 = 0 0 •0 

(ii) prob(Bt[Ao) =4• =•0 •l =0 l, •, t .a•l=•0•= 0 ' 
0 x 0 x 0 

•ii• pr•b•C t • A• •4• z2• • g • •1•2f x1•x2•2• • • •2•d•1•2 z• • • •f • y1• •2•dyi dy2 • (18) 
The detailed evaluation of the above integrals c• be found in Ref. 14. 

Let us now examine the modifications required for •he evaluation of the condition• probability ra•e of an inctoss- 
ing in (t, t+dt) •ven • outcrossing in (O, dt), which we have denoted by •(t). We have 

•(t)dt = prob•t {A 0) + 2 prob(B• [ B0) + prob(C• {A0) (19) 
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in complete analogy with (15), the only difference being that the primed events in (19) refer to inward crossings 
(inctossings) (at time t) rather than outward crossings. 

Here the events are defined as follows: 

Ao:Xl=xo; •l>•0; 

B'•:ya=XO; •2•<0; 
C'•:x2=-Xo; •2>•0; {y2{-<x0. 

Then 

In the computer programs developed we took advan- 
tage of the similarities of Eqs. (16)-(18) to Eqs. (20) 
and (22), to eliminate all redundant calculations with. 
considerable savings in program length, memory space, 
and more important, computer time. 

There seems to be no universal criterion that will 

give us the x 0 that corresponds to a given P0. The cri- 
terion that seems to be more reasonable to us is that of 

equal unconditional probabilities for the two detection 
boundaries. Approaches for resolving this problem are 
examined in Ref. 14. 

A detailed study of the behavior of the f(t) and •b(t) 
curves for the approximate model is presented in Ref. 
14. It is seen there that in all cases the curves exhibit 

the expected asymptotic behavior for small and large 
times and agree closely with the exact formulation. 

V. DERIVATION OF AN "EQUIVALENT" ), FOR THE 
(X,o) MODEL 

Sonar acoustic fluctuations are often discussed and ap- 
proximately evaluated in terms of a particular model, 
called the (X, •) (or jump) model. This model is used 
because it is relatively simple and familiar, yet it is not 
necessarily the most realistic or, the best one for any 
particular issue. • Its widespread use is, among other 
things, due to the difficulty of obtaining data which 
would permit more exact predictions of sonar behavior, 
and to the lack of exact and more rigorous theoretical 
treatments of the. detection process. An interesting is- 
sue therefore is how the (X, o) model compares with the 
detection models developed in this paper. 

In order to be able to compare the (A, •) model with 
our models, we first develop some equivalence criteria 
so that we evaluate these models on a common basis. 

In that respect, we proceed to answer the question of 
what values of X and o should be used so that such a 

comparison is meaningful. We do this as follows: 

The basic assumption of the (X,a) model is that 
"detection opportunities" are generated in time ac- 

(2O) 

(21) 

(22) 

i 

cording to a Potsson process of parameter X. • The 
reciprocal of X is known as the "relaxation time" of 
the process and its value is usually taken arbitrarily 
from empirical considerations of the process, and 
without any explicit relationship to the detection thresh- 
old level At any particular detection opportunity, a 
detection occurs if the level A in (lB, which is assumed 
to be normally distributed with a mean and a standard 
deviation defined in Refo 7, exceeds a specified thresh- 
old level Aoo It can be shown 7 that the theoretical value 
of • is always equal to 5ø6 dB, in a saturated phase ran- 
dom regime as we have assumed, hence the exclusive 
use of this value in all considerations of the (•,•) mod- 
el. 

In order to put the above defined (•, •) model into a 
common basis of comparison with our detection models, 
we estimate, in terms of its parameters, the per unit 
time unconditional probability of detection as follows: 

The probability that any particular "detection oppor- 
tunity" will end up in a detection is a = prob(A >• Ao). 
Since A = 10 log•op •, A o = 10 log•op• and p is Rayleigh dis- 
tributed, we have that a = prob(p >•Po) or 

a = exp(- p•o/2o•). 

Under the assumption of mutual independence among the 
values of A at consecutive detection opportunities, it is 
straightiorward to show that detection events in the 

(X,o) model are generated in time according to another 
Poisson process, of parameter X 2 = aX; X= is then the per 
unit time unconditional probability of detection for the 
(;% q) model. 

A common basis of comparison between the (X, •) 
model and our detection models implies that k 2 = X1, 
hence from (4') and (23) we have 

X exp(-p02/20i 2) = [P0' v/•rt ( 2•r)l/2] exp(_p02/2cri2), 

or 

x = [vpo/•(2•) TM 2]. (24) 

The above value of X is called "equivalent X." It is the 
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value that X should take in the (X, •r) model so that this 
model exhibits an average number of detections per 
unit time which is consistent with the values of 00, 
and y. If this is the case, the "equivalent" (It, •) model 
has the same average number of detections per unit 
time with our new detection models. All comparisons 
of the (X, or) model with our models implicitly assume 
that It takes the above value. Note that while (9,4) 
agrees to what has been a widespread qualitative belief 
that "It should be proportional to r," it also states that 
X should also be connected with the specified detection 
threshold level 00 as well as the standard deviation 
Of O. 

Since the detection process in the (It, (Y) model is it- 
self Poisson, the PDF for the time between two suc- 
cessive detections (interarrival time) is negative expo- 
nential, of the form 

f•(t) =X• exp(-It2t), t >• 0, (25) 

with 

It• =0• ß It = It 1 . 

The key assumption of the (It, or) model is the absence 
of time correlation between signals. This "no-memo- 
ry" property leads to analytic simplicity, but conceiv- 
ably also to discrepancies between theory and experi- 
mental data. Moreover, physical and statistical rea- 
soning,and evidence suggest that a time correlation be- 
tween the signals does exist. Thus the intensity of the 
signal at a particular instant cannot be independent of 
the intensity of that signal a few moments ago, as the 
(X, v) model assumes. 

A sum. mary of the properties of the (it, •) model, in 
terms of our previously defined terminology, follows 

(a) • (t) = •(t) = const. = 

(b) PDF for interarrival time: Negative exponential, 
given by Eq. (25), 

(c) PDFfor holding time: This PDF must be such that 
the sum of the t•vo random variables x I = t2 - t t and x 2 
= ts - t2, (where tt = time of first upcrossing, t 2 = time of 
first downcrossing, ts = time of second upcrossing), 
must follow the negative exponential distribution (Eq. 
25). If we assume x• and x 2 to be mutually independent, 
the ¾DF of their sum must be the convolution of their 
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FIG. 4. WHOI 447 record (truncated), time series ofp(t). 
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FIG. 5. WHOI 447 record (truncated), histogram ofp(t). 

PDF's. It then follows that the PDF of xl must be a 
one-hag-order Erlang (or Gamma) PDF given by the 
expression 

/,l(xl) = (It2/•rxl)e'X:'l. (26) 

Vl. RESULTS OF THE DATA ANALYSIS 

Our first set of data (referred to from now on as the 
WHOI data) was obtained from an experimer•t performed 
by Porter and Spindel near Eleuthera, ts and was made 
available by the Woods Hole Oceanographic Institution. 
The data was recorded during a long range acoustic 
propagation experiment. It consists of three records 
in which two signals per record, one at 220 and one at 
406 Hz, were transmitted from Eleulhera to drifting 
SOhObuoys approximately 300 km northeast towards 
Bermuda. A Doppler position-tracking system was 
used to remove mean multipath phaserates due to SOhO- 
buoy motions. This data was previously analyzed by 
Dyer and Shepard, 4 Hamblenf and Mikhalevsky. ?-s 

The second set of data (referred to from now on as 
the CASE data) was obtained from the records of the 
CASE experiment whose description canbe found in Ref. 
16. In this experiment three configurations were used: 
(1) fixed source on a seamount, (2) source towed by a 
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FIG. 6. WHOI 447, levelP0=Cri, histogram versus (k,•r), in- 
terarrival time. 
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FIG. 7. WHOI 447, leveip0=•l, histogram versus "square," 
interarrival time. 

surface ship, and (3) source mounted on a submersible. 
The signals were monitored at four widely separated 
fixed deep water receivers at ranges varying from 200 
to 400 km, Two carrier frequencies were employed, 
one at 15 and another at 33 Hz. More about the CASE 

data base can be found, besides the basic source, 16 in 
Ref. 17. 

We have analyzed both groups of data available to us 
with a multipurpose, interactive data analysis computer 
program, developed specifically for that purpose. 14 
For a given data record, this program can either plot 
p(t) and perform the analysis for the whole length of 
the record, or isolate the part of it that exhibits a be- 
havior compatible with our assumption, namely fully 
developed saturated phase random propagation s,8 and 
analyze only that portion of it. The matching of the da- 
ta with the predicted PDF's of interarrival and/or hold- 
ing times from the above models is checked by per- 
forming a X 2 goodness-of-fit test at the 0. 05 level of 
significance. 18 

A. The WHOI data 

The WHOI data is far from ideal for comparison with 
our models, As Hamblen s points out, it may be true 
that most of the records satisfy the multipath phase 
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FIG. 9. WHOI 447, levelp0=a •, histogram versus "square," 
holding time. 

randomness assumption, but we cannot be so confident 
about their stationarity. In a brief analysis 5 it is seen 
that • seems to be quite stationary, whereas cti 2 is not, 
fluctuating (in a single record) over a range of more 
than s/x standard deviations. By comparison, u s rarely 
fluctuates over two standard deviations. This relative in- 

stability of o• can be checked by comparing the histogram 
of p with its theoretical (Rayleigh) PDF. Hamblen presents 
plots of this histogram for all WHOI records, from 
which one can see, both visually and by observing the 
x2-test results, that the data agrees very poorly with 
the expected forms of the p PDF. Other random vari- 
ables, not strongly influenced by the nonstationarity of 
oi 2, behave much better (e.g., phase, phase rate, 
etc). However, since our detection models are pri- 
marily concerned with the p PDF, we decided to pre- 
sent the record that exhibited the best overall fit in that 

I•DF. This turned out to be record 447 with frequency 

f=406 Hz. (In fact, we analyzed only the portion. of 
this record that looked sufficiently stationary. ) The 
time series appears in Fig. 4, and the histogram in 
Fig. 5. One can notice the rather poor fit of the Ray- 
leigh PDF to the histogram of p. For this record • 
=2.388 V 2 and v=0. 00309 Hz; these estimates were 
used as inputs in all detection models, and were ob- 
tained from Refs. 5-8. 
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FIG. 8. WHOI 447, levelp0=* l, histogram versus •,o'), hold- 
ing time. 

TABLE I. Results of the WHOI data, record 447 carrier fre- 
quency 406 Hz, a12=2.388 V 2 and p=0.00309 Hz. The PDF's 
given by the (A,a) and approximate square model are com- 
pared with the histogram for a threshold level p0=ql=l.15 V. 
For the square model, x0 = 1.2p0.. The X 2 goodness-of-fit test 
is performed and is successful when X• < •. 

Mode Mean 

PDF Model (s) (s) •/2 ß X•t Fig. No. 

Observed 70 228 ...... 6, 7 
Interarrival 

Q•., o) 0 313 13.37 1Z.59 6 
time 

Square 80 245 29.50 11.07 7 

Observed 40 161 ...... 8, 9 
Holding (•,•) 0 166 18.68 14.07 8 

time 
Square 40 173 36.23 15.51 9 
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FIG. 10. CASE 21 record, leveipo=(r l, histogram versus 
(k,(r) interarrival time. 

Some of the results of the data analysis for the above 
record are presented in Figs. 6-9 and in Table I. The 
threshold level selected was P0-- 1.15 V. The value of 
x 0 for the "square" model was chosen so as to give 
equal unconditional probability of detection with the 
"circle" model (x 0-• 1.2 P0). Figure 6 displays a com- 
parison of the interarrival time predicted by the (X, (r) 
model (with the "equivalent" value of • used) with the 
data. The fit appears to be fair, yet seems inferior to 
the fit in Fig. 7, which shows a comparison of the in- 
terarrival time predicted by the "square" model with 
the data. One should particularly notice the difference 
in the height of the peak values of the PDF's between 
these two figures. The "square" model is in much 
closer agreement with the data in that respect. 

The apparent superiority of the "square'" model is 
shown more clearly in the holding time comparison 
(Figs. 8 and 9). Figure 8 displays the (k,(r) model's 
one-half-order Erlang holding time PDF and Fig. 9 the 
"square" modelis holding time PDF versus the data. 

Various statistics of the specific runs mentioned 
above are displayed in Table I. TheSe refer to the 
most probable interarrival and holding times (mode), 
to the average interarrival and holding times (mean), 
and to statistics obtained after applying the X2 goodness- 
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FIG. 12. CASE 21 record, levelp0-1.75(rl, histogram versus 
"square," interarrival time. (x 0 computed so as to produce 
the same unconditional probability with that of the circle 
model.) 

of-fit test. One can observe the following: First, the 
(X, (r) model is totally unrealistic in predicbing the 
modes of the interarrival and holding times, setting 
them to zero, while the "square" model compares very 
well with the data in that respect. Second, the (X, e) 
model highly overpredicts the mean interarrival time 
and slightly overpredictS the mean holding time. The 
"square" model overpredicts both mean times as well, 
being closer to the data for the interarrival time case. 
Third, all runs fail the X 2 test. 'This outcome is per- 
haps not a surprise, given the nonimpressive fit of Fig. 
5 (likely due to nonstationarities of the data) and the 
certainly nonoutstanding fits of Figs. 6-9. 

B. The CASE data 

In this paper we present results from the analysis of 
one record of the CASE data, record 21. Although a 
record of low signal-to-noise ratio, record 21 is one of 
the few CASE records that satisfy the phase-random- 
ness assumption, at a far greater extent than the WHOI 
data; most of the other records are nonstationary. 
Given the fact that this record has a low signal-to- 
noise ratio, our comparison as far as detection is con- 
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FIG. 11. CASE 21 record, leveip0=l.75•r •, histogram versus 
"square," interarrival time (xo=Po). 
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cerned is likely to have limited practical significance. 
However, we decided to present it since the record it- 
self satisfies •he phase-randomness assumption on 
which our detection models are based. The results of 

this comparison are presented in Figs. 10-15 and in 
Table H. The parameters of record 21 are carrier fre- 
quency 15Hz, a12=15.9V z, y=0.173 Hz. 

The "circle" model and two versions of the "square" 
model were tested for that record. In all cases, P0 

1.75 • = 7 V. Specifically the following comments 
are in order: 

Figure 10 shows how the (X,v) model (with the "equiv- 
alent" value of ;k used) compares with the data (interar- 
rival time). One can clearly observe the inability of 
this model to predict the very low probability of a very 
short interarrival time, which seems to be confirmed 
by the dataø This is to be contrasted with Figs. 11-13, 
which compare our detection models with the data (also 
for interarrival time). In Fig. 11, the "square" model 
is used, with Xo=Po. In Fig, 12, the "square" model is 
also used, but this time with Xo chosen such, that the 
"square" model gives the same unconditional probability 
of detection with the "circle" model. Figure 13 dis- 

plays the interarrival time PDF of the "circle" model. 
It can be seen that the "square model, with x o chosen 
as in Fig. 12 represents a very good approximation of 
the "circle" model. 

Figure 14 displays the holding time PDF of the (X, c) 
model versus the data. The fit appears to be very 
poor, in contrast to that of Fig. 15, where the holding 
time PDF of the "square" model is compared with data. 

Table II summarizes statistics for the above runs. It 

can be seen again that the new detection models give 
generally better predictions for the modes and means of 
the interarrival and holding times. This table shows 
that again all runs fail the X 2 test, although certain/y to 
a far less extent than the WHOI data. The reasons for 

this outcome are still unclear, and are conceivable to 
lie in issues regarding sufficient sample size. 

VII. DISCUSSION 

Two new detection models were developed under th e 
assumption of phase-random multipath ocean acoustic 
fluctuations. The methodology developed in this paper 
is not bound by the phase-randomness assumption; it is 
equally valid for any other explicitly specified random 

TABLE II. Results of CASE record 21, carrier frequency 15 Hz, a•=15.9 V 2, •=0.173 Hz, andp0 
=(1.75al) =7 V. For the square (rood) case the value ofx 0 was set equal teP0, for all other applica- 
tions of the square model reported in this paper x0 was computed so as to produce the same uncon- 
ditiona! probability with that of the circle model. The X2 goodness-of-fit test is performed and is 
successful when X2 < X2•. 

Mode Mean 

PDF Model (s) (s) X2 )•2t Fig. No. 

Observed 2.4 4.2 ...... 

(X, a) 0.0 4.8 69.43 19.68 10 
Interarrival Square (rood) 2.1 4.7 44.68 22.36 11 

time Square 2.1 4.5 29.99 21.03 12 
Circle 2.4 5.5 21.79 19.68 13 

Observed 1.0 1.1 ...... 14,15 
Holding (•, (•) 0.0 2.4 171.81 21.03 14 

time 
Square 0.6 1.2 56.73 18.31 15 
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process. In that respect, it would be interesting to try 
to develop detection models for other known fluctuation 
processes. 

The main conclusion from this study is that the detec- 
tion process has memory. In that respect, a detection 
now will very strongly influence the probability of an- 
other detection at some time in the immediate future. 

Both our theoretical models as well as the overwhelm- 

ing majority of the data have shown that it is very un- 
likely to have two detections separated by a very short 
time interval. On the other hand, two detections sep- 
arated by a sufficiently long time interval are essen- 
tially uncorrelated. The decorrelation interval is, in 
generaf, a rather weak function of the selected thresh- 
old level P0, yet it is always of the order of 0.4/v to 
0.6/r (in seconds where v is in Hz). 

Both our exact and approximate models agree with the 
above. The (k, v) model, when used with the appropri- 
ate "equivalent k," exhibits a satisfactory behavior for 
large enough times, yet is unable, being memoryless, 
to correctly predict the detection probability immedi- 
ately after a detection. Therefore, depending upon the 
magnitude of our time intervals with respect to the de- 
correlation time, the (%, (r) behavior may (for long 
enough times) or may not (for short times) hold. 

Our models were further tested by the examination of 
the value of certain easy-to-obtain statistics of the 
PDF's. In particular, the most probable time (mode) 
and the mean interarrival and holding times were com- 
puted. From the results presented in Tables I and II 
we conclude that the (X, v) model makes poor predictions 
of the mode (which is always zero for both interarrival 
and holding time), whereas our models and the data ex- 
amined suggest numbers in the ranges of 0. 
for the interarrival time and 0.2Iv to 0. lip for the 
holding time, If v is small enough, therefore, the 
predictions are quite inaccurate. Concerning the mean 
interarrival and holding times, our model predictions 
are in better agreement with the observed values than 
the predictions of the (X, a) model. 

From a practical point of view, the value of the de- 
veloped models lies in one's increased ability to predict 
the timing of events associated with detection, an ability 
which is seriously limited under the no-memory as- 
sumption of the (X,a) model. For instance, now one 
can estimate when the signal will go below the thresh- 
old, given that it has exceeded it at some particular in- 
stant; when the signal is going to cross that threshold 
again; plus, other statistics related to the interarrival 
and holding times, such as their mean and most proba- 
ble values. The additional knowledge associated with 
these models is believed to enhance the overall under- 

standing of the mechanisms of detection in the ocean 
and may also be used as a stepping stone for more ad- 

vanced processing of signals, including scenarios in 
which the signals are nonstationary, i.e., •i 2 and p2 
are functions of time. 
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