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We develop k-interchange procedures to perform local 
search in a precedence-constrained routing problem. The prob- 
lem in question is known in the Transportation literature as the 
single vehicle many-to-many Dial-A-Ride Problem, or DARP. 
The DARP is the problem of minimizing the length of the tour 
traveled by a vehicle to service N customers, each of whom 
wishes to go from a distinct origin to a distinct destination. The 
vehicle departs from a specified point and returns to that point 
upon service of all customers. Precedence constraints in the 
DARP exist because the origin of each customer must precede 
his/her destination on the route. As in the interchange proce- 
dure of Lin for the Traveling Salesman Problem (TSP). a 
k-interchange is a substitution of k of the links of an initial 
feasible DARP tour with k other links, and a DARP tour is 
k-optimal if it is impossible to obtain a shorter tour by replac- 
ing any k of its links by k other links. However, in contrast to 
the TSP where each individual interchange takes O(1) time, 
checking whether each individual DARP interchange satisfies 
the origin-destination precedence constraints normally requires 
0( N’) time. In this paper we develop a method which still 
finds the best k-interchange that can be produced from an 
initial feasible DARP tour in O(Nk) time, the same order of 
magnitude as in the Lin heuristic for the TSP. This method is 
then embedded in a breadth-first or a depth-first search proce- 
dure to produce a k-optimal DARP tour. The paper focuses on 
the k = 2 and k = 3 cases. Experience with the procedures is 
presented. in which k-optimal tours are produced by applying a 
2-opt or 3-opt search to initial DARP tours produced either 
randomly or by a fast 0( N’) heuristic. The breadth-first and 
depth-first search modes are compared. The heuristics are seen 
to produce very good or near-optimal DARP tours. 
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1. Introduction 

In its most generic form, the single vehicle 
many-to-many Dial-A-Ride Problem (DARP) is 
the problem of minimizing the length of the tour 
traveled by a vehicle which services N customers, 
each of whom wishes to go from a distinct origin 
to a distinct destination. The vehicle performs the 
tour by departing from a specified point and re- 
turning to the same point upon service of all 
customers. The DARP is a constrained version of 
the Traveling Salesman Problem (TSP) that is 
defined on its 2N + 1 nodes, the constraints re- 
garding the precedence relationships between the 
origin and destination of each customer on a feasi- 
ble Dial-A-Ride tour. Several approaches for solv- 
ing the above or other versions of the DARP have 
been presented during the past few years: For 
example, Wilson and others [ 13,141 have devel- 
oped routing algorithms for Dial-A-Ride systems 
operating in Rochester, NY; Gavish and Srikanth 
[3] have developed mathematical formulations of 
the problem; Stein [ 1 l] has presented a probabilis- 
tic analysis of some heuristic algorithms on the 
problem; Psaraftis [8] has solved the above prob- 
lem exactly using Dynamic Programming; Sexton 
and Bodin [2,10] have developed approximate al- 
gorithms based on Benders decomposition for sub- 
scriber Dial-A-Ride systems; Tharakan and 
Psaraftis [12] have solved the problem exactly in 
the case where the disutility of customers is ex- 
ponential with time; and finally Psaraftis [9] has 
presented a worst case and an average perfor- 
mance analysis of some new polynomial-time 
heuristics for the problem. For a comprehensive 
review on the state of the art on this problem see 
Bodin, Golden and others [l]. 

Due to the fact that the generic version of the 
DARP described above is NP-complete, no effi- 
cient method for solving the problem exactly is 
known. The exact Dynamic Programming ap- 
proach of Psaraftis requires O(N23N) time, [8], 
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fact which limits the tractable problem size to no 
more than 9 or 10 customers, or about 20 nodes. 
Consequently, many researchers feel that the thrust 
on this problem should be based on fast, heuristic 
procedures, and this is reflected in the recent 
literature. 

As in a heuristic approach to any optimization 
problem, a heuristic procedure for the DARP in- 
corporates the following two general steps: 

Step I: Obtain an initial feasible Dial-A-Ride tour. 
Step 2; Perform a ‘local search’ on that tour, to 

obtain an improved tour, or show that no 
improvement is possible. 

Although the literature is relatively rich on how 
Step 1 of the above generic procedure can be 
tackled, little or nothing has been done to date to 
address Step 2 for the DARP. The purpose of this 
paper is to focus on this second step and to 
present a methodology for performing efficient 
local searches on Dial-A-Ride tours. 

Our approach draws from the k-interchange 
procedure introduced by Lin [.5] and Lin and 
Kernighan [6] for the TSP. As in the TSP, a 
k-interchange in the DARP is a substitution of k of 
the links of a DARP tour with k-other links. ’ A 
D.A_P_P tocr is szid to be k-nntimnl Inr li-nnt1 if it is uy . . . ..I. \-- .- -r~, __ ._ 

impossible to obtain another DARP tour of shorter 
length by replacing any k of its links by any other 
set of k links. Several other papers, such as 
Papadimitriou and Steiglitz [7], and Kanellakis 
and Papadimitriou [4], have examined issues re- 
lated to the application of the above procedure to 
the TSP. 

In contrast to the TSP where each individual 
interchange takes 0( 1) time, checking whether each 
individual DARP interchange satisfies the origin- 
A*ctinlt;nn nrPrPrlf=nrP constraints norm.al!y re- UI.,,lllU.l”ll Y’“.,V..V”VV 
quires O(N’) time. In this paper we develop a 
method which still finds the best k-interchange 
that can be produced from an initial feasible DARP 
tour in 0( Nh) time, the same order of magnitude 
as in the Lin heuristic for the TSP. This method is 
then embedded in a breadth-first or a depth-first 
search procedure to produce a k-optimal DARP 

’ Throughout this paper we will assume that a k-interchange is 
strict, that is, all of its k links will be substituted by k other 
links. Non-strict interchanges, where only xwrze of the k links 
are substituted can be sinulariy considered. Notice that a 
non-strict k-interchange is a strict k’-interchange for some 
k’ < k, hence our assumption causes no loss of generality. 

tour. The paper focuses on the k = 2 and k = 3 
cases. Experience with the procedures is presented, 
in which k-optimal tours are produced by applying 
a 2-opt or 3-opt search to initial DARP tours 
produced either randomly or by a fast 0( N ‘) 
heuristic. The breadth-first and depth-first search 
modes are compared. 

2. The k = 2 case 

Before we begin with the k = 2 case it is useful 
to introduce the notation we will be using 
throughout the paper. 

A DARP tour of N customers (labeled n = 
1,. , N) can be described by a sequence (S,, 
S ,. . . , S,, . . , &+ , ) where i=O, l....,2N+ 1 is 
a counter representing the ith stop of the tour and 
S, is defined as follows: 

I 

0 if i = 0 or 2 N + 1 (starting and 

ending point of the tour), 

S,= +n if vehicle picks up customer n at 

stop i, 

-I7 if vehicle delivers customer n at stop i 

(i=O: 1 . . . . . 2N + 1). 

It is clear that a DARP tour has 2N + 2 links. We 
assume that the distance matrix [C(.S,, S,)] of any 
link that can be defined in our problem is known 
and symmetric. 

An alternative representation of a DARP tour 
is via the matrix [m(n, i)]. m(n, i) is the ‘status’ of 
customer n at the i th stop of the DARP tour. By 
convention: 

i 
3 if customer n has not been picked 

..+. “_ c,.. 

I 

ut_J D” lLll) 
m(n,i)= 2 if customer n is on board the 

vehicle, 
1 if customer n has been delivered. 

We will find this representation very useful in 
our subsequent analysis. It is clear that matrix [m] 
can be constructed from array (S) in 0( N 2, time. 

A DARP tour is shown in Fig. l(a). Only two 
links of that tour, (S,, S,,,) and (S,., S,,,,) are 
shown in the figure. In general there will be more 
ctnnc in the seements (0. S b. (S ---r- --- o-------- ,_ S,,.) and (LSt., li \-’ -I/> \ -,+ 17 
0). We observe that there is a unique direction we 
can traverse a given DARP tour. Traversing the 
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Fig. I. A 2-interchange. 

entire tour in the opposite direction would violate 
the origin-destination precedence constraints. This 
remark holds despite the fact that the distance 
matrix of the DARP is symmetric. 

Performing an individual 2-interchange on a 
DARP tour involves the substitution of two of its 
links, say (S,, S,+,) and (S,,, S,,,,) in Fig. l(a), 
with two other links, in this case (S,. S,,) and 

(S,+,, S,,+, ) in Fig. l(b). In the TSP such an 
interchange results in a local tour improvement if 
and only if C(S,, S,+,)+ C(S,., SIri,)> C(S,, S,.) 

+ C(S,+ I. S,,, ,) (favorable interchange). This 
condition is necessary for improving the tour in 
the DARP as well. However, a complication in the 
DARP is that the new tour resulting from the 
interchange may not be feasible. Notice that the 
direction by which the segment (S,,,, S,.) is 
traversed after the interchange (Fig. l(b)) is the 
opposite of its original direction (Fig. l(a)). There- 
fore it is conceivable that traversing that segment 
from S,, to S,, 1 may violate the origin-destination 
precedence constraints, in which case the inter- 
change in question is not feasible. It is thus clear 
that we should check whether an interchange is 
feasible before performing it. 

For a given initial DARP tour, finding the best 
favorable 2-interchange (or proving that none ex- 
ists) requires ‘checking out’ all possible ways to 
substitute links similar to (S,. S,, , ) and (S,., S,. + , ) 
of Fig. l(a) with links similar to (S,, S,.) and (S,, ,, 
S,., ,) of Fig. l(b). ‘Checking out’ means determin- 
ing both whether the substitution is feasible and 

5. 
1 ‘+I Si’ 

(b) 

whether it results in a tour improvement. Since 
0 < i < 2N - 2 and i + 2 < i’ < 2N, this means that 
the total number of possible 2-interchanges, and 
hence, ‘check outs’ as described above is equal to 
Cff0p2(2N-i- l)=N(2N- l), or O(N*). The 
total computational effort will depend on the 
amount of time needed for each ‘check out’, as 
well as on how this verification procedure is struc- 
tured within the algorithm. 

An obvious but crude way to determine whether 
or not any proposed 2-interchange is feasible is to 
examine the interchange in question ‘as we go’ 
through the process of enumerating all 2-in- 
terchanges. The only way that the 2-interchange 
proposed in Fig. 1 is infeasible is if there is ut leust 
one customer who has his/her origin and destina- 
tion in the segment (S,, ,, S,,). For, if this were the 
case, inverting the segment would violate the 
origin-destination precedence constraints for that 
customer. 

The most simple way to find out whether such a 
customer exists is to examine all pairs of nodes in 
the segment (S,, ,, S,,) and look if there is at least 
one pair of the form (+n, -n). This operation 
will take 0( N 2, time, and, if executed at every 
2-interchange under consideration, will bring the 
total computational effort of the procedure to 
0( N4). 

Although such a complexity is polynomial, it is 
by no means modest, particularly if the procedure 
is to be applied repeatedly to problems of consid- 
erable size (e.g. N = 100). An obvious question to 
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answer therefore is the following: Can we bring 
the complexity of this procedure to a rate lower 
than 0( N4)? The answer to this question turns out 
to be yes. A more daring question is: Can we bring 
the complexity of the procedure to a rate of 0( N * ), 
the same as in the TSP where no feasibility checks 
are needed? It turns out that the answer to the 
second question is also yes. The rest of this section 
will explain why. 

A first step toward reducing the complexity of 
the algorithm can be made if we determine feasi- 
bility as follows: 

Consider any particular 2-interchange similar to 
the one portrayed in Fig. 1, that is, any particular 
combination of i and i’. Then look at the ith and 
i’th columns of the [m] matrix corresponding to 
the DARP tour in question (see beginning of this 
section). If there is a customer n for whom m(n, 
i) = 3 and m(n, i’) = 1, then the 2-interchange in 
question is infeasible. If no such customer exists, 
this 2-interchange is feasible. 

Performing the above procedure reduces the 
total computational complexity to 0( N3), for at 
each proposed 2-interchange we have to perform 
O(N) checks. The logic of the procedure is easy to 
follow, for only if m(n, i)= 3 and m(n, i)= 1 are 
customer n’s origin and destination within the 
segment (S,, ,, S,.). 

The computational complexity can be reduced 
to 0( N2) if we separate the feasibility checks from 
the improvement checks. This can be done by 
performing a ‘screening’ procedure in the begin- 
ning of the algorithm, the purpose of which is to 
determine the feasibility of every possible 2-inter- 
change. Information from such a screening proce- 
dure is then stored in a matrix, to be used im- 
mediately afterwards in the ‘optimization’ part of 
the algorithm, where tour improvements are con- 
sidered. In such a way, the latter part of the 
algorithm runs in 0( N *) time, for each individual 
2-interchange takes O(1) time. As it will be seen 

Table 1 
An illustrative example of a DARP tour (N = 4) 

below, the ‘screening’ part of the algorithm also 
runs in O(N*) time, bringing the complexity of 
the whole procedure to O(N*). 

To describe how the ‘screening’ part works, we 
need to define the following function: 

For a given DARP tour and a given stop i (0 < i < 
2 N - 2) let FIRSTDEL(i) be the position of the 
first of the deliveries remaining beyond stop i + 1, 
for which the corresponding customer has not 
been picked up to and including stop i. If no such 
delivery exists, set FIRSTDEL(I’) = 2 N + 1. 

In mathematical terms, FIRSTDEL(I’) = x if x is 
the smallest number above i + 1 for which there 
exists a customer n so that m(n, i) = 3 and m(n. 
X) = 1. If no such customer exists, then x = 2 N + 1. 

We illustrate the above definition by an exam- 
ple: Table 1 shows a representation of a DARP 
tour for N = 4 customers, in terms of its sequence 
($I>..., S,) and its matrix [ml. To find FIRST- 
DEL(O) we search for the first delivery beyond stop 
# 1 for which the corresponding customer has not 
been picked up to and including stop #O. Clearly, 
this is the delivery of customer # 1 which occurs at 
stop #4, hence FIRSTDEL(0) = 4. To find 
FIRSTDEL(1) we search for the first delivery be- 
yond stop #2 for which the corresponding 
customer has not been picked up up to and includ- 
ing stop # 1. Clearly, this is the delivery of 
customer 4 which occurs at stop #6 (customer 1 
has been picked up by stop # 1 so his/her delivery 
is no longer considered). Proceeding similarly we 
find FIRSTDEL(i) for i = 2,. . . ,6, information 
which is summarized as follows: 

FIRSTDEL(0) = 4. 

FIRSTDEL( 1) = 6, 

FIRSTDEL( 2) = 7, 

FIRSTDEL( 3) = 7, 

FIRSTDEL(4) = 7, 

i 0 1 2 3 4 5 6 7 8 9 
6 0 +1 +4 +2 -1 +3 -4 -3 -2 0 
m(1, i) 3 2 2 2 1 1 1 1 I 1 
m(2, i) 3 3 3 2 2 2 2 2 1 1 
~(3, i) 3 3 3 3 3 2 2 1 1 1 
m(4, i) 3 3 2 2 2 2 1 1 I 1 
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FIRSTDEL(5) = 9, 

FIRSTDEL( 6) = 9. 

The function takes the value of 9 for i = 5 and 6 
because no customers exist beyond i = 5 which 
have not been picked up. 

Theorem 1 concerns the feasibility of a particu- 
lar 2-interchange. 

Theorem 1. The substitution of links (S,, S,, ,) und 
(S,.. S,,+,) with links (S,, S,.) and (S,+,, S,,,,) is 
feasible if and on@ if i’ < FIRSTDEL( i). 

The proof of this theorem is obvious and hence 
omitted. 

Step 2: Create a matrix FE(i, i’) with values ‘true’ 
or ‘false’ depending on whether the sub- 
stitution of links (S,, S,,,) and (S,., S,,,,) 
with links (S,, S,.) and (S,,,, S,,,,) is 
feasible or not. The matrix is created as 
follows: 
doi=Oto2N-2 

do i’ = i + 2 to 2 N 
FE( i, i’) = ‘false’ 
if i’ < FIRSTDEL( i), FE(i, i’) = ‘true’ 
end loop i’ 

end loop i 

The ‘screening’ part of the algorithm is there- Each of the above steps can be executed in 0( N2) 
fore as follows: time. 

I---.- ‘1 i=O 

Step l:Calculate the values of FIRSTDEL(i). 
The algorithm for doing so is formalized 
in Fig. 2. 

NO 
j 

Is stop x a delivery? I 

I 
YES 

Has corresponding customer 
been picked up up to and 
including stop i? 

NO / , 

j i=i+l * 

YES A- 
i 

-- 
GO TO STEP 2 
_ I 

Fig. 2. k = 2: Step 1 of the ‘screening’ procedure (calculate the values of FIRSTDEL(,)) 



Table 2 
Feasibility matrix [F&r, I’)] for all possible 2-interchanges of 
the DARP tour of Table I (T: ‘true’. F: ‘false’; circles repre- 
sent positions where I’= FIRSTDEL(r)) 

I I’ 

2 3 4 5 6 7 8 

0 T T @ F 
1 T T T ‘0:; 
2 _ T T T @ F 
3 _ _ _ T T @ F 
4 _ _ _ _ T @ F 
5 _ _ _ T T 
6 T 

For our illustrative example, the matrix [FE] 
after the execution of Steps 1 and 2 of the screen- 
ing procedure is summarized in Table 2 (T: ‘true’, 
F: ‘false’). Circles represent positions where i’ = 
FIRSTDEL( i). 

After the ‘screening’ part is executed, the proce- 
dure goes through the ‘optimization’ or tour im- 
provement part in the same way as in the Lin 
heuristic for the TSP. Any particular 2-interchange 
for which FE(i, i’) =‘false’ is immediately dis- 
carded. 

It should be emphasized here that the method 
described above only finds the best 2-interchange 
out of a given DARP tour, if such interchange 
exists. This by no means implies that the resulting 
tour is 2-optimal. because further improvement 
might be achieved if the procedure is applied again 
to the improved tour. Hence, to find a 2-optimal 
tour, the procedure has to be applied a number of 
times. There are two main ways for doing so 
(breadth-first and depth-first search) and they will 
be described in Section 4. 

3. The k = 3 case 

It is straightforward to extend the approach 
presented in the previous section to the k > 2 case. 
However, instead of presenting the general k > 2 
case we would like to focus on the k = 3 case 
because some subtle points of that case merit 
special attention. The discussion of those points is 
expected to provide sufficient insight for the kinds 
of issues that are likely to be encountered in the 
general k > 2 case. 

In contrast to the k = 2 case, where the two 
links(S,.S,+,)and(.S,,,.S,,+,)thatwillbedropped, 
uniquely identify the two links (S,. S,,) and (S,, ,, 
S,. , ,) that will substitute them. in the k = 3 case 
there are tn~ ways of substituting any given triplet 
of links with a triplet of other links. Figures 3(b) 
and 3(c) show the two possible 3-interchanges that 
can be performed by dropping links (S,, S,, , ). 
( S,,, S,, + , ) and (S,.,, S,.. , , ) of a given initial DARP 
tour (Fig. 3(a)). 

It is straightforward to check that the DARP 
tour shown in Fig. 3(b) can be obtained from the 
one of Fig. 3(a) after the successive application of 
~MJO 2-interchanges. Also, the tour of Fig. 3(c) can 
be derived after three 2-interchanges are applied to 
the initial tour. 

Without loss of generality we will assume that 
all our 3-interchanges will be similar to the one of 
Fig. 3(c). Our analysis requires minor modifica- 
tions if the 3-interchange is similar to that of Fig. 
3(b). In other words. links (S,, S,, ,), (S,,, S,.,,) 
and (S,+ S,.,, , ) will be substituted by links (S,, 
s,,, I)> ($. &,I ) and (S,,., S,, ,). The condition 

C(S,, s,+,)+c(s,,, S,,+,)+C(S,,., S,,.,,) 

is a necessary condition for the interchange in 
question to result in a local tour improvement. 

Naturally, as in the k = 2 case, this condition is 
not sufficient, for the interchange might be infeasi- 
ble. However, in contrast to the k = 2 case, the 
k = 3 case preserves the direction by which the 
segments (S,,,. S,,) and (S,,,,. S,,.) will be 
traversed after the interchange. (One should note 
that this is true only for a 3-interchange of the 
type of Fig. 3(C)). Therefore, if these segments are 
feasible in the initial tour, they will be also feasible 
in the final tour, except on1 if there exists in the 
former segment an origin whose corresponding 
destination lies in the latter. This is true since the 
order by which these segments are traversed is 
reversed after the interchange (compare Figs. 3(a) 
and 3(c)). In that respect, checking whether the 
interchange in question is feasible would require a 
different kind of ‘screening’ test than the one 
applied on the k = 2 case. Other than the above 
difference, we can extend the methodology devel- 
oped in the previous section to the k = 3 case in a 
straightforward manner as we will see below. 

In order to find the best favorable interchange 
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‘i ‘i+l 
s. si+l 1 s. I ‘i+l 

Si’ Si’ si 1 

0 0 0 
‘i’+l ‘i’+l ‘i ‘+l 

(a) (b) (cl 

Fig. 3. Two ways to perform a 3-interchange. The one shown in (c) will be followed throughout this paper. 

out of an initial DARP tour (or prove that none 
exists) we have to ‘check out’ all possible ways to 
substitute links (S,, S,, ,), (S,.. S,., ,I and (S,.., 
s ,,,+,) with links (S,, S,,+,), (S,,, S,,,+,) and (S,,., 
S,+,). Since O<i<2N-2, i-t 1 <i’<2N- 1 
and i’ + 1 < i” < 2N, this means that the total 
number of possible 3-interchanges is equal to 

2,Y-2 2A-I 
1 c (2N-i’)=+N(2N- 1)(2N+ 1). 

or 0( N3). Despite the fact that checking whether 
any individual 3-interchange is feasible can take 
0( N ‘) time, we can apply a method similar to the 
one developed in the previous section to keep the 
total computational effort to 0( N3). As in the 
k = 2 case, the ‘screening’ procedure is performed 
before the ‘optimization’ procedure and is based 
on a function that is defined as follows: 

For a given DARP tour and two given stops i 
(O<i<2N-2) and i’ (i+l<i’,<2N-1). let 
FIRSTDEL(i. i’) be the position of the first of the 
deliveries remaining beyond stop i’, for which the 
corresponding customer has not been picked up 
up to and including stop i, but is on board the 
vehicle at stop i’. If no such delivery exists, set 
FIRSTDEL( i. i’) = 2 N + 1. 

Mathematically, FIRSTDEL(i, i’) = x if x is the 
smallest number above i’ for which there exists a 
customer n so that nz(n, i)= 3. nz(n. i’)= 2 and 

m( II, X) = 1. If no such customer exists, then x = 
2N+ 1. 

Theorem 2 concerns the feasibility of a particu- 
lar 3-interchange. 

Theorem 2. The substitution of links (S,. S, + , ), (S,., 
S,,,,) clnd (S,,,. S,,.,,) with links (S,, S,.,,), (S,,, 
S,.., ,) und (S,,,, S,,,) is feasible if und on!y if 
i” < FIRSTDEL(i, i’). 

The proof of the theorem is obvious and hence 
omitted. 

The algorithm for computing the values of 
FIRSTDEL( i, i’), as well as the ‘screening’ part of 
the procedure are similar to those presented in the 
previous section for k = 2 and are omitted as well. 
Each of the above steps can be executed in 0( N ‘) 
time. 

As in the k = 2 case, the method described 
above will find the best 3-interchange out of a 
given DARP tour, or show that none exists. The 
following section discusses, among other things, 
ways to arrive at a 2-optimal or a 3-optimal tour. 

4. Computational experience 

There is considerable flexibility on how the 
procedures described in the last two sections can 
be used so as to obtain a k-optimal DARP tour. 
The flexibility concerns the following: 
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(1) The mode of local search, 
(2) The way the initial DARP tour is obtained. 
Concerning the mode of local search, we will 

distinguish between breadth-first and depth-first 
search. 

Breadth-first (or, steepest descent) search finds 
the best of all favorable k-interchanges that can 
result from a given DARP tour. This can be done 
as described in the previous two sections for k = 2 
and k = 3 and involves O(N”) operations. Once 
such an interchange is found, the initial DARP 
tour is replaced and the procedure is applied again 
to the new tour. The process is repeated until no 
favorable k-interchange can be found. 

By contrast, depth-first (or, greedy) search re- 
places the initial DARP tour upon the encounter 
of its first favorable k-interchange. Again, the pro- 
cess is repeated until no favorable k-interchange 
can be found. 

In both cases, the depth of search is equal to the 
number of k-interchanges executed plus one, since 
the last iteration of the procedure is spent to prove 
that no further improvement is possible. In 
breadth-first search, the number of favorable in- 
terchanges that are encountered is in general 
greater than the number of those that are ex- 
ecuted. Those two numbers are the same in 
depth-first search (by construction). The question 
on how deep can a search be is at this time open. 
The same holds for the question on which is the 
structure of the set of all solutions reachable from 
the initial solution by a finite number of inter- 
changes, or, which is the quickest way to obtain 
the best local optimum. It is conjectured that there 
may be pathological cases where the depth of 
search is arbitrarily high. Therefore it should be 
emphasized that in both search modes the 0( N’ ) 
running time established earlier is a time bound 
for any single iteration of the search procedure 
(improve a given tour or prove that no improve- 
ment is possible); it is not a time bound for the 
entire procedure (find a k-optimal tour.) 

Whether any one of the above two modes of 
search is unambiguously superior to the other, is 
not a straightforward question to answer. For the 
TSP, Lin [5] reported that depth-first search pro- 
duces k-optima in substantially less time than 
breadth-first search. However, he did not report 
on whether or not depth-first k-optimal tours were 
consistently shorter than the corresponding 
breadth-first k-optimal tours (quality of the solu- 

tion). Furthermore, it is not clear that Lin’s con- 
clusion necessarily holds for DARP interchanges, 
since the structure of the DARP is different from 
that of the TSP. 

To shed some light on the above issue we have 
programmed both search modes for the k = 2 and 
k = 3 cases and compared them via a series of 
simulation runs. In all runs, N origins and N 
destinations are sampled from a uniform distribu- 
tion on the unit square. The vehicle departs from 
and finally returns to the center of the square. We 
have examined two different ways to obtain an 
initial DARP tour: 

(1) Initial tour generated rundomJy. This means 
that at each stop the vehicle is equally likely to 
visit any of the remaining origins or any of the 
remaining destinations whose origins have been 
previously visited. 

(2) Initial tour obtained via Psaraftis’ 0( N’) 
Minimum Spanning Tree (MST) heuristic. This 
heuristic was analyzed extensively in [9] and seen 
to produce very good DARP tours (more on that 
point later). 

The results from those runs appear in Tables 3 
to 6 for N = 10, 20 and 30 (20, 40 and 60-node 
DARP’s) and for three random seeds for each N. 
Symbols appearing in those tables are explained as 
follows: 

L,: 
L,: 
ITOT, : 

IFE, : 

IFAV,: 

INT,: 

Length of initial DARP tour, 
Length of k-opt DARP tour (k = 2, or 3) 
Total number of k-interchanges consid- 
ered, 
Total number of feasible k-interchanges 
encountered, 
Total number of favorable k-interchanges 
encountered, 
Total number of k-interchanges executed 
(= Depth of search - 1). 

L, and L, are normalized by &N for reasons 
dealing with the asymptotic behavior of L*, the 
optimal DARP tour length. Stein [l] has shown 
that for a unit area L*/m approaches 1.02 with 
probability 1.0 for N + co. More on this point 
later. 

In all tables, numbers in parentheses refer to 
depth-first search. The discussion of the computer 
runs goes as follows: 

Table 3 refers to the k = 2 case, when the initial 
DARP tour is random. An immediate observation 
from that table is that, in contrast to the TSP, 
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Table 3 
Comparison of breadth-first versus depth-first search 2-opt procedures when initial DARP tour is mr&m (Numbers III parentheses 
refer to depth-first search: for further explanation see text) 

Seed N=lO N = 20 N = 30 

* 427 #I62 #833 #I22 # 341 x 502 $55 # 263 4910 

L,/V= 2.71 

LJJ2N 1.31 
(1.14) 

ITOT 3040 
(3918) 

IFEz 830 

(922) 

IFAV, 135 

(43) 

INT, 14 

(43) 

2.51 

1.19 
(1.23) 

3800 
(4606) 

1193 
(1218) 

217 

(41) 

18 

(41) 

2.69 

1.63 
(1.62) 

1900 
( 1940) 

424 

(376) 

87 

(20) 

8 

(20) 

2.77 

1.84 
(1.57) 

14040 
(22436) 

2422 
(2292) 

357 

(46) 

17 

(46) 

3.4x 

1.71 
(1.77) 

21060 
(21361) ( 

444 1 
(3142) 

550 

(58) 

26 

(58) 

4.26 

2.02 
(1.88) 

27 300 
29 146) 

4840 
(4024) 

884 

(60) 

34 
(60) 

4.13 

1.80 
(1.83) 

83 190 
(105542) I 

16 160 
(23 982) 

2095 

(115) 

45 

(115) 

3.82 

1.75 
( 1.44) 

79 650 
:134175) ( 

15 100 
(19470) 

1962 
(137) 

44 

(137) 

4.02 

1.63 
(1.15) 

92040 
159 292) 

18745 
(26660) 

2413 

(168) 

50 

(168) 

there seems to be no evidence that depth-first duced by Psaraftis’ MST heuristic [9]. Again, there 
search is substantially faster than breadth-first is no evidence that breadth-first search is compu- 
search in producing a 2-optimum. Actually, in all tationally more burdensome than depth-first 
nine cases, depth-first search arrives at a 2-opti- search. Notice however that in some cases the 
mum after having considered more 2-interchanges breadth-first executes more 2-interchanges than 
(ITOT,) and after having executed more 2-inter- the depth-first search (in contrast to the results of 
changes (INT,) than breadth-first search. How- Table 3). The quality of the solution is about the 
ever, as far as the quality of the solution is con- same, with each of the procedures winning twice 
cerned, depth-first search wins in 6 out of 9 cases. and five runs resulting in a tie. 

Table 4 is similar to Table 3 with the only 
difference that the initial DARP tour is now pro- 

As it would be expected, we generally obtain 
better 2-optima (35% shorter on the average) if we 

Table 4 
Comparison of breadth-first versus depth-first search 2-opt procedures when initial DARP tour IS produced by Psaraftis’ MST 
heuristic [9]. (Numbers in parentheses refer to depth-first search: for further explanation see text) 

Seed N= IO N = 20 N = 30 

#42? #762 #833 # 122 # 347 f 502 #55 #263 #910 

L,/V= I .43 I .28 

L,/JzN 1.31 1.22 
(1.11) (1.21) 

ITOT, 570 760 
(980) (795) 

IFE, 214 271 
(286) (281) 

IFAV, 6 14 

(8) (4) 

INT, 2 3 

(8) (4) 

1.24 1.16 

1.03 I .08 
(1.12) (1.10) 

950 6240 
(1206) (4579) 

322 1291 

(366) (894) 

11 39 

(6) (6) 

4 I 

(6) (6) 

1.19 1.42 

1.10 1.37 
(1.10) (1.37) 

5460 6240 
(4336) (4349) 

1612 
1036) 

35 

(6) 

1401 

(783) 

35 

(9) 

6 7 

(6) (9) 

I .20 1.21 I .29 

1.13 I.1 1 1.25 
(1.13) (1.13) (1.25) 

19470 19470 14 160 
(21363) (I6 844) (10466) 

4120 4306 3242 
(3761) (2798) (2058) 

69 79 36 
(6) (16) (13) 

IO 10 7 
(6) (16) (13) 
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use the MST heuristic to provide us with an initial 
DARP tour rather than obtaining the latter ran- 
domly. There are of course some exceptions (see 
Seed k910 for N = 30). In any event, a compari- 
son of Tables 3 and 4 indicates that we definitely 
need more calculations (about one order of magni- 
tude more) if we start with a random DARP tour. 

Tables 5 and 6 are the equivalent of Tables 3. 
and 4 for the k = 3 case. As in the k = 2 case, there 
is no evidence that breadth-first search is compu- 
tationally more burdensome than depth-first 
search. Actually. in all cases examined, the latter 
executes more interchanges than the former. The 
quality of the solution seems about the same. 
However, and in contrast to the k = 2 case, the use 
of the MST heuristic to generate initial DARP 
tours does not seem to produce better 3-optima 
than those produced if we start with a random 
tour. A comparison of Tables 5 and 6 indicates 
that the quality of the 3-optimum is about the 
same, independently of the method to construct 
the initial tour. In some cases actually (depth-first 
search). a random initial tour seems to produce 
slightly better 3-optima than a MST-generated ini- 
tial tour. Of course. the computational effort of a 
3-opt procedure applied on a random initial tour 
is greater (but not much greater) than the corre- 
sponding effort when the procedure is applied to 
an MST-generated tour. 

Another observation is that the 3-opt proce- 
dures outperform the corresponding 2-opt algo- 
rithms by producing tours that are about 30% 
shorter on the average if the initial tour is random 
and about 6% shorter on the average if the initial 
tour is MST-generated. A fortiori. they produce 
tours that are about 9-10% shorter on the average 
than the ones produced by Psaraftis’ MST 0( N ‘) 
heuristic. Of course, the 3-opt procedures are sig- 
nificantly more burdensome computationally than 
the corresponding 2-opt algorithms (about one 
order of magnitude more). 

It should be noted here that despite the super- 
iority of the 3-opt procedures over the correspond- 
ing 2-opt ones in terms of quality of the solution, 
there are individual (rare) cases where a 2-opt 
procedure might produce a better tour (see for 
instance N = 10, seed #427, random initial tour 
and depth-first search). This phenomenon could 
very well occur even if our 3-interchanges were not 
strict. as they were assumed to be. 

The above observations, interesting as they 

might be. cannot provide by themselves conclusive 
answers to what are perhaps the most important 
questions concerning the performance of the 2-opt 
and 3-opt procedures: 

(1) How far from the optimal solution do those 
procedures deviate on the average? 

(2) How do they compare with other heuristics 
for the sample problem? 

Answering those questions requires far more 
analysis than it might seem at first glance. For 
instance, trying to answer the first question by 
comparing the procedures directly with an exuct 

algorithm (e.g. the one presented in 181) would 
involve severe computational difficulties if N is 
greater than 9 or 10. Trying to answer the second 
question is also difficult, because with the excep- 
tion of the heuristics of Stein [ 1 I] and Psaraftis [9]. 
no computational experience of other DARP heur- 
istics lending itself to comparison has been re- 
ported to date. 

Fortunately, an extensive investigation of this 
issue was made by the author in [9]. in conjunction 
with the 0( N’) Minimum Spanning Tree (MST) 
heuristic for the DARP. In that paper it was 
shown that. for 10 < N ,< 50. the MST heuristic 
compares well, and in some cases, better than 
some heuristics proposed by Stein [l l] for the 
same problem, despite the fact that one of those 
heuristics is asymptotically optimal (for N + 30). 
In [ 1 l] Stein showed that such an asymptotically 
optimal algorithm produces tours for which the 
ratio L/m, for a uniform distribution on a unit 
area and for N + cx. converges with probability 
1 .O to 1.02. Stein’s work actually established the 
use of L/m as the ‘yardstick’ in evaluating a 
DARP algorithm’s performance. However. in [9] it 
was shown that the convergence of the above 
asymptotically optimal heuristic to an optimal be- 
havior is obtained for very h-g-e values of N (of 
the order of IO3 to 10h customers if one is to 
maintain computational tractability). Test runs 
performed in [9] indicated that, for N = 50, Stein’s 
asymptotically optimal heuristic generally pro- 
duces longer DARP tours than those produced by 
the MST heuristic applied to the same problem 
instances and for which L/&N is in the neigh- 
borhood of 1.20 to 1.30. For 10 < N < 50, it was 
shown that the MST heuristic yields a L/fiN of 
about 1.15 to 1.20, and fairly independent of N. 
The reader is referred to [9] for this extensive 
analysis, the repetition of which is beyond the 
scope of this paper. 
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Results presented earlier in this section, showed 
that the 2-opt and 3-opt procedures produce DARP 
tours which are 5510% shorter than those pro- 
duced by the MST heuristic. In addition, another 
series of runs for very small problem sizes compar- 
ing these procedures with an exact DARP algo- 
rithm [8] showed that both procedures performed 
very well, especially the 3-opt, which, for those 
small problems, produced the exact optimum for 
the majority of cases. 

In light of all of the above, we believe that the 
results of this section improve upon the results of 
[9], and hence, support the following conjecture: 
For the range of problem sizes examined (N < 30) 
for the kind of distance metric assumed 
(Euclidean), and for the form of probability distri- 
bution simulated (uniform on the unit square), the 
2-opt and 3-opt algorithms produce very good or 
near-optimal DARP tours, even if the initial DARP 
tours are random. Whether or not this result can 
be generalized to higher values of N, different 
distance metrics and different probability distribu- 
tions is not known at the moment. 

5. Final remarks 

The extension of the procedures developed in 
the previous cases to cases where k > 3 is straight- 
forward. This would involve the modification of 
the ‘screening’ procedure described earlier. The 
computational effort associated with the general 
case is O(Nk) per iteration of the search proce- 
dure. 

The approach developed in this paper can find 
applications in other areas, not necessarily related 
to Dial-A-Ride systems, or routing for that matter. 
The general problem of sequencing a set of N jobs, 
each of which has two tasks that have to be ex- 
ecuted in a prescribed order (although not neces- 
sarily the one immediately following the other), 
belongs to the same category. For instance, the 
scheduling of computer jobs can be considered as 
falling into this category (e.g. one task is the 
compilation of the program and the other its ex- 
ecution). 

Of interest might be the case where the k-inter- 
changes considered are not strict, in the sense that 

only some of the k links are substituted. It is 
conjectured that this modification is not likely to 
produce dramatic DARP tour improvements. 

A final direction for possible research concerns 
the case where the initial DARP tour is not feasi- 
ble, that is, violates the origin-to-destination prece- 
dence constraints. The important open question at 
this point is: Can one enhance the local search by 
producing a k-optimal solution through inter- 
mediate tours some of whom might be infeasible? 
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