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1. INTRODUCTION

This paper examines the scheduling of large-scale advance-request
dial-a-ride systems, describes two algorithms that have been
developed recently in the above context, and provides analysis
and insights into how these algorithms are expected to perform in
various operational scenarics and in comparison with one another.

The problem we are concerned with is that of routing and

scheduling a fleet of vehicles to serve customers who have to be

picked up from specified origins and delivered to specified

destinations. Our operating scenario assumes that all of the
requests for service are received well in advance of the actual
time of vehicle dispatching (say, the day before at the latest).
Tt also assumes that each customer has specified a desired pickup

time or a desired delivery time {but not both) and that the

vehicle operating agency has adopted some guidelines so as to
ensure adequate quality of service to all customers. Such
guidelines, also known as customer service guarantees {or service
quality constraints), are adopted so as to avoid "intolerable”
deviations from each customer's desired (pickup or delivery)
times and/or excessively circuitous routes that would force a
customer to spend "too long" a time on board the vehicle (as
compared to that customer's direct ride time). As we shall see,

such customer service puarantees are typically translated into

"tire-windows" for each customer's pick up and/or delivery times,

in a fashion that will be explicitly defined later. At the same
time, the scheduler would alsc like to achieve a pood utilization
(or productivity) for the fleet. Given that such a goal is

generally in conflict with the objective of an acceptable quality

of service, the problem is to find the best way to utilize

available regources so that both goals are "satisficed".

The generic problem described above is known by several
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names in the Transportation/Operations Research literature, such

as '

‘multi-vehicle many-to-many advance-request dial-a-ride
problen™, “subscriber dial-a-ride problem", "dial-a-ride problem
with desired pickup or delivery times", "dial-a-ride problem with

time windows", and so on. This problem is to be contrasted with

the equivalent "immediate-request" problem, in which customer

requests are received and processed at the same time as the
actual time of vehicle dispatching (that is, in real time). Most
real-world dial-a-ride agencies operate a "mixed" service, where
both types of requests (in varying proportions) can be handled

simultaneously. In this paper we shall be concerned with a pure

advance reservation configuration only.

There has been an abundance of algorithmic development

efforts in this area in the recent past. Wilson and Weissberg
{1976) and Wilson and Colvin (1977) developed heuristic
algorithms for the dial-a-ride system of Rochester, New York.
Sexton (1979) and Bodin and Sexton (1982) developed single
vehicle and multi-vehicle approximate algorithms which they

applied to the subscriber dial-a-ride system of Baltimore,
Maryland. Psaraftis (1980) described an exact approach for the
single-vehicle immediate-request problem, and modified this
approach for the equivalent problem with time windows (Psaraftis
(1983a)). He also developed several polynomial-time heuristics
for the single-vehicle immediate-request problem (Psaraftis
(1983h, 1983c)). (A polynomial-time algorithm is one whose
running time is bounded by a polynomial function of the size of
the problem). Hung, Chapman, Hall and Neigut (1982) developed
a procedure (also known as the "Neigut/NBS" algorithm) for the
multi-vehicle time window problem, and Roy, Chapleau, Ferland,
Lapalme and Rousseau (1983) described an algorithm for the same
version of the problem. TFipally, the current author and his
colleagues developed two different multi-vehicle advance-request

dial-a-ride algorithms during the past 2-3 years: in Jaw, Cdoni,
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Psaraftis and Wilson (1982), the "Grouping/Clustering/Routing"
(or GCR) algorithm was described, while in Jaw, Odoni, Psaraftis
and Wilson (1984) the "Advanced Dial-A-Ride algorithm with Time
Windows" (or ADARTW) was introduced.

The focus of this paper is on the two most recent
larpe-scale dial-a-ride algorithms, GCR and ADARTW.

Specifically, Section 2 gives an overview of both algorithms and
illustrates the main similarities and differences with regard to
the operating scenaric, the treatment of time constraints, the
solution approach, and other features. Section 3 describes some
recent, encouraging computational experience with the two
procedures, including some cemparisons of the two using the same
data set. Section 4 concentrates on ADARTW, by presenting some
worst-case considerations and related scenarios. The analysis
identifies the features in the structure of ADARTW that are
likely to ceuse undesirable schedules in some (rare) cases.
Finally, Section 5 contains some brief concluding remarks on
directions for further research, including an extension to the
"mixed” demand case.

2. OVERVIEW OF THE GCR AND ADARTW APPROACHES

Although the real-world problems for which GCR and ADARTW have
been designed are essentially the same, there are some
differences in the way "reality" is modeled in each of the two
approaches. In general, conceptual terms, the GCR approach
assumes that a customer would be satisfied if he is picked up or
delivered "reasonably close" to his specified pickup or delivery
time, whereas the ADARTW approach provides a much stricter
definition of what constitutes an acceptable level of service.
Moreover, the ADARTW approach assumes that the dispatcher
considers vehicle fleet size as a decision variable, whereas in
GCR fleet size is treated as a given parameter. The rest of this

" section discusses these and other more subtle differences in
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detail. For reference purposes, a list of symbols and
abbreviations used throughout the text appears in Table 1, and a
summary of assumptions and features of GCR and ADARTW is listed

in Table 2.

2.1 Type—P and Type-D Customers. Both approaches assume that

each customer requesting service has specified either a desired

pickup time (DPT) or a desired delivery time (DDT), but not both.

Such an assumption is reasonable in view of the fact that
customers using the system are likely to be time-constrained only
on one end of their trip (usually the delivery end during the
morning and the pickup end during the afternoon). ADARTW
actually goes further by assuming that each DPT is the earliest
time the corresponding customer can be picked up (EPT) and that

each DDT is the latest time the corresponding customer can be
delivered (LDT)}. Both approaches allow a mix of both categories
of customers (frow now on referred to as type-P and type-D
respectively) in the same problem. Also, both approaches can be

modified in a straightforward way to allow a customer to specify

both & DPT and a DDT. In fact (also see Section 2.2) bhoth
;;;;baches derive, each in a different way, "equivalent” delivery
(pickup) times - or time windows - for each type-P (type-D)
custoper . These derivations would he bypassed if a customer
happens to specify both a DPT and a DDT, and these values would
be used directly by the algorithms. Of course, in this case
separate checks should be applied to ascertain whether the
computer-specified DPT and DDT values constitute a feasible

requirement (also see Section Z.2).

2.2 Time Constraints and Service Guarantees. Perhaps the most

important difference between the operating scenarios assumed by
the two approaches is the treatment of time constraints and the

corresponding customer service guarantees. For each type-P(D)
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customer, the GCR algorithm simply derives an equivalent desired

delivery (pickup} time DDT(DPT), as a function of that customer's-:

desired pickup (delivery) time DPT(DDT) and his/her direct ride

time DRT as follows {see also Figure 1):

For type-P customers, DDT = DPT + CF * DRT (1)

DDT - CF * DRT (2)

For type-D customers, DPT

where CF (for "conversion factor™) is a calibration parameter
(>1) to account for possible circuity in that customer's ride.
(A high value of CF means that the difference DDT-DFT is greater
than DRT, hence the customer may arrive to his/her destinatioen

via a circuitous route) GCR then divides the entire time horizon

of the problem into adjacent "time proups” (see Figure 1). Each

time group has a duration of DT, with DT being another
calibration parameter, Sensitivity on the selected values of CF

and DT is reported in Section 3.

CF*DRT

DPT DDT
> - 2 Time

fE—oT —31"_' DT "_"ﬂ'f‘— DT —¥<—— DI —

Figure 1: Time groups in GCR algerithm

In GCR, customer service guarantees (and corresponding

time constraints) are "soft" in the sense that the algorithm will

attempt to service (pickup or deliver or both) each customer only
within the time group that encompasses his DPT or DDT, without

directly considering that customer's individusl desired time.

For instance, if time groups are set up every 30 minutes starting

b e W b T S T

. g ———
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at 8:00 a.m., an attempt will be made to pick up & customer who
has specified a DPT of 10:37 a.m. between 10:30 a.m. and 11:00

a.m., with the projected actual pickup time being quoted to him
well in advance of actual vehicle dispatching.

The operating scenario of ADARTW is rather different (see

Figure 2).
DRT J
W MRT
(a)
Dy #fr’—#- - —» Time
| DRT
®) MRT W
A Ay At > Time
EPT LET EDT DDT=LDT

Figure 2: Time windows in ADARTW algorithm, {a) fur type-P

customers, (b} for type-D customers.

For each type-P(D) customer ADARTW derives three types of times,

which, together with that customer's EPT (LDT), constitute a pair

of time windows (one for pickup and one for delivery) for that

customer ., These times are defined as follows:

For type - P customers (EPT specified, see Figure 2a):

EPT + W (3)
EPT + DRT (4)

Latest pickup time LPT

I

Earliest delive;y time EDT
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Latest delivery time LDT = LPT + MRT. (5)

For type — D customers (LDT specified, see Figure 2b):

Earliest delivery time EDT = LDT - W (6)
Latest pickup time LDT = LDT - DRT (7}
Earliest pickup time EPT = EDT - MRT, (8)

where W is a user-specified time window width and MRT is defined

as the customer's maximum ride time. MRT is a function of a

customer's DRT. A typical, but not binding functional
relationship is MRT = a +b*DRT, with a>0 and b>1 being user
inputs.

Customer service puarantees in ADARTW are “hard™, in the

gsease that each customer's actual ride time (ART) and actual
pickup time (APT) (or actual delivery time (ADT}, as appropriate)

oust satisfy the following constraints:

for all customers: DRTCART<MRT (9)
for type-P customers only: EPTCAPTSLPT {10)
for type-D customers only: EDTCADTKLDT (11)

where LPT in (10) and EDT in (11) are defined by (3) and (6)
respectively.

It is easy to check that if (9) and (10) ((9) and (11)) are
satisfied for a type-P(D) customer, then that customer's ADT
(APT) must lie between EDT(FPT) and LDT (LPT) as defined by (4)
and (5) ((8) and (7)) respectively (the opposite is not
necessarily true).

If we allow a customer to specify both a DPT and a DDT, then
both these values would be used as such in the GCR algorithm,
that is, the conversion implied by (1) or (2) would not be used.

However, in this case we should also require that the ratio

B T

-

o
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{DDT-DPT)/DRT be greater than 1.0 (otherwise the request would be
infeasible). In ADARTW, if a customer has specified both a DPT
and a DDT, we would use EPT=DPT, LDT=DDT, and derive LPT and EDT
from (3) and (6) respectively. In this case, the conversions
implied by (4}, (5), (7) and (8) would not be used. Also, in
this case the maximum ride time constraints would be
automatically satisfied whenever DPT-DPT a+b*DRT.

The issue of which of the two approaches (“soft" or "hard")
is more appropriate, has been and is being widely debated, both
among algorithm developers and among operators and policy makers.
We feel that each approach has merit, as well as drawbacks;

these are discussed further in Section 5.

2.3 Rejecting Customers versus Adding Mere Vehicles. Since the

"hard" approach in ADARTW raises the prospect of infeasibility
(which does not exist in GCR due to the absence of such

constraints), there are two basic user options by which this

issue can be handled: Fither by denying service toc those

customers whose service guarantees cannot be met, or by adding

more vehicles (drawn from a "backup vehicle fleet"}, at a cost,
This cost is explicitly considered in ADARTW's objective function
by a term that quantifies the "cost of vehicle resources" (see
Section 2.6). Such decisions can also be made in GCR, but only
at the discretion of the dispatcher. That is, whenever he feels
that some customers suffer from poor quality of service, or
whenever the capacity of some vehicle is exceeded (GCR does not
consider vehicle capacity constraints explicitly), the dispatcher
has the option to deny service to some customers, or rerun GCR
with more vehicles until service quality becomes acceptable and
capacity constraints are satisfied..

2.4 Optimizing Vehicle Fleet Size. The treatment of vehicle

fleet size as a function of time is another major difference
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between the two approaches. In GCR, the number of vehicles to be

operated throughout the day is supplied by the user, possibly as
a function of customer demand (this number can very over time).

In ADARTW, this number is a decision variable, determined so as

to optimize a prescribed objective function which includes

vehicle resource costs (see also equation (16) below).

2.5 Objective Function and Solution Method/GCR. The ultimate

objective in GCR is to maximize total vehicle productivity (in

terms of passenpers serviced per vehicle hour}. However, the
design of the algorithm is such that the above objective is never

explicitly considered by the procedure. Instead, GCR produces a
set of routes and schedules by attempting to optimize a set of

surrogate measures, defined in such a way that the resulting

solution is likely to achieve good productivity and a good

quality of service. The general solution method of GCR, along

with the performance measures that the alporithm attempts to

optimize at each step, is summarized as follows (for complete
details see Jaw, Odoni, Psaraftis and Wilson (1982)).

STEP 1 (Grouping): Based on each customer's DPT and DDT (one of
them being input and the other calculated by (1) or (2)), and on

user inputs DT and CF, divide the time horizen into equal and

consecutive time groups, and then assign customers to those

groups, according to the interval into which their DPT's or DUT's

fall. This is just a decomposition of the problem by time, and

no optimization is involved.

STEP 2 (Clustering): For each time group defined in Step 1,

further subdivide ell customers of that time group into

"clusters"”, and then assign a vehicle to service (pickup,
deliver, or both) all customers in each cluster. The mechanism

by which this is done is fairly intricate (see Jaw, Odoni,

e

et
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Paaraftis and Wilsen (1982)) but can be described roughly as
follows:

For each time group k do the following:
Step 2.1: Let m be the number of vehicles available (but
thus far unassigned) in k. Identify m unassigned customers

in k and proclaim each of them a '

'seed" customer for a new
cluster in k. Do this by attempting to optimize a measure
of "seed dispersion", that is, declare a customer a "seed"
if he maximizes the "distance" between him and the closest
seed already chosen. '"Distance” between two seeds is
defined as a function of the distances between origins and
destinations of the corresponding customers, depending on
the scenario.

Step 2.2: Assign the m available vehicles to the m seed
custcmers obtained in Step 2.)1. Do this by attempting to
minimize the total cost of the assignment. The cost
associated with each vehicle-seed pair is defined as the
distance between the vehicle and the origin of that seed.
Step 2.3: Add all other customers in group k, one by ome,
to either the new clusters formed in Step 2.1, or, to
already existing clusters carried from group k-1. Each
cluster is allowed to grow in such a way so that "vehicle
workload" is spread out evenly among all vehicles. The
vehicle workload computation includes some “logk ahead"
features to take into account the locations of the origins

and destinations of customers belonging to time group k+l.

STEP 3 (Routing): For each time group k and for each cluster

identified in Step 2, use a single-vehicle routing algorithm to
form a route that will service the customers of that cluster
(vehicle capacity constraints may be considered in this step of

the procedure). The objective here is to minimize route length
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for each cluster. GCR offers four options with respect to which
routing algorithm will be used in Step 3 (see Psaraftis (1980,
1983a, 1983b, 1983c)).

The main novelty {and core) of the GCR algorithm is its

clustering step, whose basic purpose is to identify sets of

customers that bhave good "directivity” characteristics, that is,
have similsr directional patterns of travel (e.g. "north to
south”, "east to west"). Such a task is very difficult in a
many-to-many envirenment because customers whose origins are
close to one another {and hence seem suitable to be picked up by
the same vehicle)} may have their destinations widely separated,
thus making the eventual vehicle route inefficient. OStep 2 of
the algorithm was tested extensively and was shown to produce

clusters of good "directivicy”.

2.6 Objective Function and Solution Method/ ADARTW.  The
solution method of ADARTW is completely different from that of
GCR. 1In fact, ADARTW uses an explicitly defined objective
function. The basic idea of the algorithm is to build routes and

schedules by sequentially inserting each customer into the most
promising "provisional™ route and schedule constructed thus far.
Its main novelty lies in the way by which feasible insertions are
identified. The algorithm's basic version can be described
roughly as follows (for complete details see Jaw, Odoni,
Psaraftis and Wilson (1984}):

STEP 0 (Tnitialization}: For all customers, set up time windows

according to (3}-(8). Rank-order all customers by nondecreasing
order of FPT. Put all customers into an "unprocessed customer

list™ (UCL). Let n = size of UCL. Set up "active vehicle fleet
(AVF) and "backup vehicle flget" (BVF). Set up "pool size"” K (K

= user input >1)
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STEP 1 {(Candidate Customer Selectiom): Take the top k = min. (n,

K) customers out of UCL and into "pool of customers for immediate

assignment”" (or, "pool"). If K = 0, END.

STEP 2 (Tentative Insertion): For all customers i in '"pool", do

the following:
STEP 2.1: For all vehicles j in AVF, do the following:
Find all feasible ways in which i can be inserted into che
work schedule of j so that (a) no service guarantees to any
customers are violated; (b) no vehicle capacity constraint
is violated (see also below). If none is found, examine
another vehicle in AVF. If none exists, then either declare
i REJECTED, or censider a vehicle j from BVF and repeat.
Find the insertion of i into the work schedule of vehicle j
which results in minimum marginal insertion cost (see alsa
below). Call this cost COSTij-
STEP 2.2: For customer i, find vehicle j*(i) for which

CosT, | COST,. for all j examined in Step 2.1l. Call
ij*(1) ij

this minimum cost MINCOSTi. Tentatively assign i te

i*(1).

STEP 3 (Best Insertion): Find customer i* in "pool" for which

MINCOSTi MINCOSTi for all i in ''pool"™. Permanently assign i* to
FE(L*) .

STEP 4 (Update): Update AVF and BVF. Update all vehicle

schedules. Dump remaining customers of "pool" back into UCL.

Set n = n-1 and go to Step 1.

Central to ADARTW is the concept of a “schedule block". &
schedule block is a sequence of stops (plckups and deliveries)
scheduled to be visited by a vehicle, with no idle time (or
"slack') in between. Figure 3 shows two such schedule blocks:

Block 1 represents the pickup and delivery of customers 1 and 2

P —
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bl 42 -2 -1 +3 -3

—3 SLACK - O—Q——O——O-Fy SLACK L,su.c.l; — -3 Time

BLOCK 1 BLOCK 2

Figure 3: The concept of a schedule block (A "+" denotes pickup
and a "-" denotes delivery)

(in the sequence shown) and Block 2 shows the pickup and delivery
of customer 3. Slack time will generally exist between two
consecutive schedule blocks. In Figure 3 a slack time between
Blocks 1 and 2 means that the time it takes the vehicle to drive
from the destination of customer 1 to the oripin of customer 3 is
less than the difference in the scheduled times of these two
operations (deliver # 1 and pick up # 3). Such a schedule thus
implies that the vehicle should idle at any one of these two
points (or at both) for a total amount of time equal to the value
of the slack.

Step 2.1 of ADARTW attempts to insert a mnew customer
somewhere within the work-schedule of a vehicle, It does this by
continually keeping track of how much each stop in each schedule
block can be shifted upstream or downstream so that no
constraints are vicolated. It also keeps track of the maximum
available slack between consecutive blocks. Given a new customer
and a candidate vehicle, there are three insertion options open
to ADARTW: First, inserting both origin and destination within
(or around) cne individual schedule block. Second, creating a
new schedule block by inserting these two points between two
consecutive schedule blocks. And third, inserting them into two
different schedule blocks. Notice that this last option implies
that all slack between the two “receiving” blocks will have to
disappear, since one of our operating assumptions is that the
vehicle is not allowed to idle if a customer is on board (see
Table 2). The basic mechanics of identifying feasible insertions
for the first two options are described in Jaw, Odoni, Psaraftis
and Wilson (1984)) and for all options in Jaw (1984). In this

paper, we shall have an opportunity to observe the insertion

-

e s T
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logic of ADARTW in conjunction with the worst-case considerations
of Section 5.

The marginal cost MC. . of a (feasible) insertion of a
customer i into the work schedule S of a vehicle j (with S
already including other customers k) is defined as follows

(subscript j dropped from all terms for convenience):

Me, = DUi + kE (DUk - DUk) + VCi (12}
e85

where DUi (DUk) is the disutility to customer i (k) after the

insertion of customer i, DUk is the disutility of customer k

before the insertion of customer i and VC_ 15 the cost to vehicle

resources, :

The functional form assumed by ADARTW for DU:L (and, by

analogy for DUk and DUk) is a quadratic function of % the

pickup or delivery time deviation of customer i, and, of yi, the

excess ride time of customer i, as follows:

2 2
DU - +c (13
17 69% TN T ST YTy
where X, and y, are defined as follows:
APTi - EPTi if customer i is Type-P
X =

i (14)
LD'I‘i - ADTi if customer i is Type-D

Y. = ART, - DRT, (15)

i i i

and Cl to c, are user-specified nonnegative constants.
A quadratic form was chosen for DUi because it is both more
general than a linear form and more realistic in representing

actual customer dissatisfaction.
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Finally, VCi is assumed to be a function of 2 the

additional active vehicle time due to Insertion of customer i,

and of v, the additional slack vehicle time due to insertion of

customer i, as follows:

VC, = c.z, + c,w, + SW, (
1 1

525 1 Se¥y T oegyy) (16)

€771

where CS to C8

The term denoted by SW

are user-specified non-negative constants.

L in (16) is called "system workload

index" and is a measure of how heavy the workload of vehicle j is
at the time of the insertion of customer i. The existence of
this term in (16) penalizes additional vehicle time more in
situations in which vehicle workload is already high. SW, is

i
calculated according to the following ewpirical formula:

(Number of system customers in [EPTi - T,EPTi + TDH
SW = (1
(Effective number of vehicles in above interval)

with T being another constant.

We note that in case 1 is not inserted into two different
schedule blocks (which, in fact, would happen in most cases due
to MRT-constraints and penalization of excess ride time yi), the
summation in {12) need only be evaluated for customers k
belonging to at most one schedule block of 5.

We end this section by noting thar Table 2 displays some
additional (but wmincr) features that help highlight the
difference between GCR and ADARTW.

3. COMPUTATIONAL EXPERIENCE

There has already been extensive computational experience

with both GCR and ADARTW. This has included running the

algorithms with both simulated and real data, performing

e
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extensive sensitivity analyses on various parameters and,
finally, comparing the two approaches on the seme data set. The
general assessment of these runs as far as both computational
efficiency (CPU time) and performance (vehicle productivity,
route circuity, customer service quality) are concerned has been
quite positive for both approaches. In addition, both algorithms
have dealt successfully with by far the largest-size problem
database that has yet been examined (more than 2,600 customers),
and can deal with even larger problems with no significant

difficulty, This section summarizes these results and describes

the cases on which the twe algorithms were compared.

3.1 GCR Algorithm. In Jaw, Odoni, Psaraftis and Wilson (1982) a
series of simulation runs of the GCR algorithm were described.

These involved simulating 4 hours of service in a 6x6 square mile
geographical area. Customer origins and destinations were
distributed uniformly and independently over the area, and their
requests were distributed over the 4-hour interval at a rate
ranging from 100 to 500 customers per hour. A sensitivity
analysis was made on the number of available vehicles (which
ranged from 10 to 60), on the length of the time interval DT
{which was chosen to be 30 or 60 minutes) and on the conversion
factor CF (chosen to be 1,0 or 1.5). & 50%-507 mix of type-P and
type-D customers was assumed. A general conclusion from these
runs was that DT is the most important calibration parameter. In

the runs examined, the best results were achieved with DT = 60
minutes whereas the performance of the algorithm generally
deteriorated with DT smaller. This is probably due to the fact
that GCR is less successful in linking adjacent time groups if DT
is too small., Average vehicle productivity ranged from about 3.5
to more than 15 passengers per vehicle hour, depending on the
scenario. Increasing the number of vehicles predictably resulted

in lower productivity but in better quality of service, but did
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not necessarily result in higher CPU time, due to the tradeoff
between the clustering and routing steps. This tradeoff is due
to the fact that a higher number of vehicles generally results in
more clusters (and hence more CPU time for the clustering step)
but also in fewer customers per cluster (and hence less CPU time
for the routing step). In all runs, CPU time ranged from 0.50 to
about 16 minutes on a VAX 11/750, again depending on the size of
the problem.

3.2 ADARTW Algorithm. Similar (although smaller-scale)
gimulation runs were performed in Jaw, Odoni, Psaraftis and
Wilson (1984)) and in Jaw (1984) for ADARTW. A 9-hour, 6x6

square mile scenaric was examined in Jaw, Odoni, Psaraftis and

Wilson (1984), under the same (as in Section 3.1) general
assumptions regarding the distribution of origins, destinations
and desired times. In all cases the total number of customers
were 250, with the demand pattern throughout the period of
service fluctuating between 20 and 40 requests per hour. Time
windows were set to 20 or 10 minutes and the maximum ride time
was set to 5 minutes plus twice the direct ride time of each
customer. Ap initial fleet size of 4 vehicles and an option to
add more vebhlcles if necessary was assumed. Sensitivity analysis
was performed on the values of the eight objective function
coefficients and on the width of the time window. A general

observation from these runs was that vehicle productivity {which

ranged hetween 3 and 4 passengers per vehicle hour} seemed to be

a decreasing function of Cl' Cyr Cqu and cys especially ) (the
coefficient of the linear terw representing pickup or delivery

deviation). Average deviation from desired (pickup or delivery)

time seemed to be most sensitive to and negatively correlated

with both Cl and <, (the coefficient of the quadratic term
associated with pickup or delivery deviation), especially in the
case of a wider time window. We should emphasize however that

e m—— =
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all of the above dependencies, although definitely identifiable,
were not that pronounced. Thus, it seems (at least from these
runs) that although the selection range of ADARTW's objective

function coefficients is extremely broad, vehicle productivity

and service attributes geem to depend less on the values of those

coefficients, and more on other, problem-specific inputs, such as

the time window width W, and the relationship between MRT and DRT
(coefficients a and b). In that respect, a “tightly constrained”
problem (W small, MRT close to DRT) predictably results in a

lower productivity and in a higher number of vehicles if no

customers are to be rejected. In our runs, between 10 and 14
vehicles were eventually unsed, this number never being a strictly
monctonic function of any of the objective function coefficients.
CPU time averaged about 20 seconds on the VAX 11/750.

It should be also stressed that all the runs of ADARTW
reported in Jaw , Odoni, Psaraftis and Wilson (1984) referred to
the version of the algorithm in which (a) the "pool size" K was
set equal to 1 and (b) a customer’s origin and destination could
not be inserted into different schedule blocks. Larger pool
sizes and the possibility of insertion inte two different blocks
were examined in detail in Jaw (1984), This analysis showed no
significant improvement in productivity and service attributes
for larger velues of K, although this certainly resulted in a
significent increase in CPU time. Nevertheless, we feel that a
"small” value of K >1 (say, between 5 and 10) is appropriate so
as to reduce the myopia of ADARTW when K = 1 (an example of this
is presented in Section 4). An insertion into different schedule
blocks was observed to happen very rarely (for reascns Chat were
discussed in Section 2.6) and to generally result in very small

gains.

3.3 Comparison Between GCR and ADARTW. Despite the fact that
the abstract problems (or, models) for which GCR and ADARTW have
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been degigned are different, & comparison between the two

approaches is indeed worthwhile, because both eventually refer to

the same real-world problem. However, significant caution must

be exercised ipn the design of the test cases so that the
comparison is fair.

We have compared the two algorithms via two cases: one

using real data and one usinp simulated data. Before we describe

these cases, we observe that since GCR is "less constrained" than

ADARTW (as far as quality of service, adherence to time
constraints, etc. are concerned), one would a priori expect GCR
to produce solutiens of higher productivity than ADARTW if both
procedures were applied to the same problem. Interestingly
enough, the first comparison of the two algorithms produced
exactly the opposite result. JIp that comparison ADARIW was
observed to dominate GCR both in terms of quality of service and
productivity. However, the second comparison revealed that such
superiority of ADARTW is not always guaranteed, in the sense that
GCR may, in some cases, achieve a better productivity than ADARTW
without a significant deterioration in the quality of service.

Details of the two comparisons are as follows:

The first comparison involved rumning both algorithms with a

real database. The database covered about 16 hours of operation
of the flexible-route system of Rufbus GmbH Bodenseekreis, in the
city of Friedrichshafen, West Germany. The database included
information on 2,617 customers, of which 2,397 were type-P while
the remaining 220 were type-D (this database is maintsined at
M.I.T.).

Running either algorithm with this database presented some
initial obstacles, because the database had features that did not
match the operating assumptions of the procedures. Thus, some
effort was spent to "convert" the original database to one that
could be processed by both algorithms. Perhaps the most drastic
of those conversions was the treatment of those type-P customers

E——
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in the database who were "ismediate-request” customers. For both
4]

algorithms, we converted these customers to "advance-request

customers by defining their DPT as the actual time of their

request, In eddition, since the distance matrix of the database

was not symmetric (although asyrmetries were not that

pronounced), we ran the GCR algorithm with a converted distance

matrix, by replacing each entry dij of the matrix with 0.5(dij +

d ). ADARTW was tested against the original matrix.

' We were told that the Rufbus fleet consisted of one
33-passenger vehicle, four 9-passenger vehicles and twenty-three
17-passenger vehicles. Since both GCR and ADARTW assume
jdentical vehicles, we ran ADARTW with a capacity of 17 for all

vehicles. An "active vehicle fieet” of 10 vehicles, with the

option to add more vehicles if necessary was assumed. In GCR

(which does not accept capacity constraints) we externally varied

the number of vehicles throughout the day with a peak of 21

vehicles. Vehicle speed was set to 15 mph for both procedures.

Finally, we were told that Rufbus schedulers tried to keep a
15-minute time window, although at times this constraint was
relaxed to 60 minutes to avoid rejecting "immediate-reguest"

customers. We somewhat arbitrarily translated this policy to the

following parameters: For GCR, we set DT = 30 minutes and CF =
1.0. For ADARTW, we set W = 15 minutes, and MRT = 5 mins +
1.5*DRT. We selected the cobjective function coefficients of
ADARTW as follows: €=3 ¢ =1, c_=0.8, and all others zero.
Finally, we set the parameter T in (17) equal to 60 minutes.
The above description highlights some of the difficulties
involved in testing any generic dial-a-ride algerithm on a
real-life database, and the risks of comparing two procedures
which have been based on different assumptions. Given the nature
of some of the conversions, we have reservations about comparing

actual Rufbus schedules {which refer to a "mixed" demand case)

with the results of GCR or ADARTW. However, we are more
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confident as far as the legitimacy of the comparison between GCR
TABLE 4: Siwuleted davabase of 2% ruslomers. All

" n x
and ADARTW on this "converted" database is concerned. This T aad T ot (na i are s Fandbediba

comparison is displayed in Table 3 (Rufbus scheduling results are @ mile. Al) desired pickup and delivery
Eimis are in hours and miputes.
also displayed, for illustration purposes only).
" P rd. 1 Dast. . oPT DOT
TARLE 3: Comparison between GCE apd ADARTW on che Rufbus l Cusromer Orlan_'CC-le gL cooxy
“conwverted™ datalimss., Rufbus resulis are showm | {typed g 3 _ - 1
L
for 4lluscraticn purpoias caly. ALl times are ‘ I
1 (D) 180 437 30 382 ' 7142
io mioures. Praduceiviety Ls in pasiengers per : : S
yebilcle hour. By convenrien, early deliveries |z (D) 380 184 442 198 7:37 |
({plchkupe) gnd lete pickups {deliveries) have L; (D) hiz 90 488 404 [ 745
time devincions pgrester (lssp) than or egual " = i ]
especti & (P) 27 413 169 516 1:0i
To EETS respectively. | | i
5 <D} 197 29 205 153 7156
o —
— I E— & (P) 326 490 324 166 7:14
=" | GcR | ADARTW | RUFBUS g FF 543 183 14 813
Vehicles weed ] 17 25 8 (m 163 77 1 254 291 a:1e
Vehiicle producrivircy 10.53 12.06 8.87 Jﬁ . |
! 14 7121
Average deviatien {lare pickup or early ' 17.59 6.60 11.9 | 9 (P} 394 189 | 23 4 |
delivery) | ¢ 10 P} 11 66 283 278 7:23
Average deviation {early pickup or late -13.3r | o B.A. 11: @ 377 420 332 7 8:33
delivery) B | o
Average vide cime ratio . 2.1 1.54 N.a, L 12 (D) 528 0 8% i £533
CTU time (VAX 11/730) ) H | 42 N.A L 13 () 465 ‘l 4Gk Ph 144 7:48
' 1 | e
! — ———— 16 (P 572 73 93 34 7:51
15 (D) 212 161 183 474 8153
| 164y | 243 | 100 589 | 436 Filr
§

We observe that both algorithms produce reasonable | @ | o2s3 | ses o { RS
schedules with regard to quality of service and productivity Pae ey | @ | e 175 128 s
levels. We also observe that, for this example, and with the 19 (B 4Lk | 111 243 298 [ e:10

l 1 i
exception of CPU time, ADARTW clearly dominates GCR on every I 20 (D) 362 | st s | oaw 9:17
> . 3 - T T y T 1
count, that is, with respect to both quality of service and 133 | 106 102 ¢ 2% §:13
productivity. This dominance is perhaps surprisieg in view of ELT I 428 259 | Filé I
. : : i
the fact that the problem solved by ADARTW is more constrained Doag1 537 138 S8 | B8 | f
than the one solved by GCR. 348 13 520 1 258 | [ %8
T ‘{ - 4
The second comparison was made based on a simulated database 7 194 33 1 298 it

of only 25 customers (see Table 4). Customer origins and

destinations were uniforwly and independently distributed on a

P i i — L
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6x6 square mile area, Eight of those customers were type-P and
17 were type-D. Desired pickup (or delivery) times were
uniformly distributed within approximately three hours of
service. We ran both algorithms with 4 vehicles and a vehicle
speed of 15mph. In GCR we used DT=60 minutes and CF=1.0, and in
ADARTW W=30 minutes and MRT=5 minutes + 2%DRT. Fipally, the
objective function coefficients of ADARTW were set to ¢ =1, ¢

= 0.8, and all others zero. Table 5 shows the results Zf the
comparisen. We can see that, in this example, GCR outperforms
ADARIV in terms of total vehicle time, average ride time ratio
and vehicle productivity, without using more vehicles. A further
examination of the schedules (see Jaw (1984)) reveals that GCR
delivers only two type-D customers more than 30 minutes earlier
than their DDT's and all type-P customers less than 30 minutes
later than their DPT's. Furthermore, no actual ride time in the
GCR schedule exceeds the maximum ride time constraints of ADARTW,

TABLE 5: Comparison becwesn GOF and ADARTY on the Eimulated

database. Al)l rimes are in Biputes. Productivicy

is in passengery pet vepicle hows. By gonvencisn,
garly delivaries {pickups) and late pickups (de-
liveries) have time deviations greater (iess) than

Sr_equal [ Eero respectivaly.

— —_— S for =

| T
,_ ‘ GCR ADARTH
| venicles uped 7 —- 4

Toial velicle cime kI a9

P oof late deliveries {our of 17} ! 3 ! 0
Average deviatlon given late deliwwey ~146.3 [ 0
I.l-.-u-.u deviaglon given early dalivery 16.6 5.6
| # af warldy pickeps (our of 8} 3 | a
Average deviation gilveo sarly picku; l -9 { a
AvEFage diviation given late pickup 19.2 19.4
l;-.-,_:‘;,-u ride tisme ratic 1.33 l 1.49
Vefiicle productivity , 4.17 I 1.88
'C'_' Time {VAX 1LS750) 1.12 1.4
e L L b
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Of course, the last comparison can be criticized on the
grounds that ADARTW might conceivably obtain better results by an
appropriate choice in its objective function coefficients.
However, given that such choice is sometimes not clear, we
believe that the comparison has demonstrated the premise that GCR

can outperform ADARTW in some cases.

Due to small scale (and conceivably contrived nature} of
this last comparison, it is clear that additional computationul
experience with hoth procedures is necessary in order to shed
more light on what types of instances are likely to be more
"favorable" to one of the algorithms as opposed to the other,
However, based on our experience with both procedures to date,
and on the fact that ADARTW possesses wore features that would
fit a given real-world situation {such as capacity constraints,

general distance matrix, etc.), we conjecture ADARTW is likely to

outperform GCR in most realistic gperational situations and

hence, is better suited for implementation in such situations.
Still, we regard GCR as a viable tool for quickly producing
reasonable solutions which could be used either in planning
gituations or in operaticnal situations on a preliminary basis.
In the lacter case, GCR could be used to provide good starting
solutions (e.g. customer clusters) that could be further improved
with the help of a post-optimization routine (for instance,
similar in spirit with the "swapper" algorithm of Bodin and
Sexrton (1982)).

The GCR and ADARTW codes have been written in FORTRAN IV and
PLL respectively, and their approximate lengths are 3U00 lines
for GCR and 2000 lines for ADARTW. These codes are maintained at

M.I.T. (inquiries should be addressed to the author).

4. WORST-CASE CONSIDERATIONS IN ADARTW

Worst-case analyses of insertion beuritics have already beca

performed for several routing problems to-date. For instance, in
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Rosenkrantz, Sterns and Lewis (1974), the worst-case error ratio

of borh the nearest insertion and the cheapest insertion methods,

as applied to a "triangle-inequality" Traveling Salesman Problem

of n nodes, was shown to be equal ta 1.0. The worst-case errar

ratio of a heuristic W as applied to 2 minimization problem P is

defined os the maximum, over all possible instances of P, values

of the ratio (Z - 7 W2
- H NPT OPT
objective Z of the problem when solved by H, and ZOPT is its

optimal value. (Such a definition implies that the two methods

where ZH is the value of the

mentioned above produce tours which are at most 100Z longer than

= 1,0). For
the same version of the Traveling Salesman Preblem it is also

the optimal tour, since in this case (Z -7  )/zZ
H oPT" 0O

known that both the arbitrary insertion and the farthest

insertion methods exhibit a worst-case errvor ratic of 2%*ln(n) -
0.84 (see alzo Golden, Bodin, Doyle and Stewart (1980)). More
recently, a worst-case analysis of some heuristics for the

vehicle routing and scheduling problem with time windows was

carried out by Solemon (1983). This arnalysis showed that a
variety of heuristics {including, but not limited to, insertion
methods) exhibit an 92(n) worst-case evror ratio for n customers
as far as the number of vehicles used, the toral distance
traveled, and the total schedule time are concerned {that is, the
worst-case error ratio of these heuristics was shown to be at
least equal to a linear function of n).

The pertinent question here is, whether any kind of similar

analysis can be carried out for ADARTW (this issue is "academic"

for GCR, since that approach does not use an explicitly defined
objective function). A first cbservation is that such a task
would be extremely difficult, given the nontrivial nature of the
problem (regarding both its objective function and its
constraints) and the nontrivial design of the algerithm. Jaw
(1984) posed the question whether rhe f(n) behavior reported in
Scloman (1983) might be true also for ADARTW, but left the

question open.

o o T
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Another observation that can be made is that analyzing
heuristics in terms of their worst—case relative errors (that 1s,
in terms of their worst-case error ratios) may make little sense
in certain problems: for a minimization problem P and a heuristic
= 0 and ZH 0, the

This may lead to

H, if there are instances of P for which Z0
worst-case error ratio of H becomes + «
erroneous conclusions regarding the merits of H, particularly if
is small.

oPT ] \
It is important to recognize that whereas such a "singular

the absolute error ZH -7
(Z _ =0) behavior is rare in most vehicle routing problems {in
whiEE typically Z measures such quantities as total distance
traveled, number of vehicles, etc., and hence Z > 0), this is
not necessarily the case for the problem solved by ADARTW, duc to
the form of the objective function considered. Indeed, by an
appropriate choice in the ceefficients Cl to ¢ {which are parts
of the input that defines a specific problem instance), it is

relatively easy to envision cases for which ZOPT = 0., Svuch cases

would correspond to objective functions measuring total customer

disutility only (at least one of ¢ ¢, ¢_, ¢ being nonzero and

1" 2T 3 4
£ =¢ =c =c¢_ =0), in which the minimum achievable value of
ZSmight go all the way down to zero. This means that if there
i Z = ich Z > 0, the
exists such a case ( 0) for whic ADARTY

worst—case error ratio of ADARTH is + =.
Mot surprisingly, such a case can be canstructed. Despite
the ratio (2 -2 [z beromes
the fact that the use of ( ADARTW OPT) oPT
= 0, we shall present one such case below,

oPT
so as to increase our understanding of how ADARTW behaves, and to

meaningless when Z

indicate when and why it may behave poorly. WHe also discuss some
alternative worst—case criteria later in this secltion.

Consider three requests on the Euclidean plane, as shown in
Figure 4. Assume there is only one vehicle (of unit speed},
initially located at point 0. Assume also that two of the
requests (customers 2 and 3) have specified desired (earliesti)

pickup times equal to v3/2 = 0.71 and 1 + v2/2 = 1.71
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I
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Figurs 4: Cuntomer and vehicle

locarlioen in example.

respectively. Customer ) has specified a desired (latest)

delivery time equal to 5 + vas2 = 5.71,
time window W for this problem has been

the maximum ride time for all customers

Finally, assume that the

set equal te 6, and that
is equal to &

(in“=2pendent of direct ride time). It can be seen that the

service guarantees for this problem are rather loosce. 5till,
assume that we would like to obtain the lowest possible total
customer disutility. For this problem, assume that the
disutility of each customer is just equal to that customer's
deviation from his desired time (pickup or delivery, as
appropriate). That is, assume that the only nonzero objective
function coefficient is ¢ =1,

Given the above data, Table & displays the calculated

TABLE A: Time windows for ) customers of example

(asterisked

¢3 are ioputs; all other

_times svwe ¢ lated}.
Customer | Trie ‘L w1 | wr et | uwr |
r | o 419 4.2 028 | s |
2 ( f!."'l‘ | .71 =% ¥ J 10.71 l
Py 1.71 2.1 n.n
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{according to (3) - (8)) pickup and delivery time windows for all
threz customers.

A cursory investigation reveals that the optimal solution

ta this problem corresponds to the route (Q, +2, +3, -3, +1, -2,

-1) shown in Figure 5. The corresponding schedule is shown in
Taple 7. This solution is optimal because the total deviation

from desired time is zero (ZOPT = 0), the lowest possible.

Notice also that there is no glack in the vehicle schedule.

-3 +3

Figure 5: Optimal route (see also
Table 7

Table 7: Optimal Schedule (see
alsa Figure 3)

Arrival 'Departure | Idle ,De?lchE_Tmr_T:de
Step 1ime Time Time Time Devialfon | Time
s A B | D 0 1__- | - x
+2 0.71 I 0.71 ! 0 - 0.1 Q -
+3 1.71 1.71 o] 1.71 | ] -
-3 2.7 2,71 (B - |- 1 |
+1 3.71 3.71 1D - | = = !
-2 &.71 4,11 G | - 1 - | &
-1 L5 - - lsmn | 0 !
[ T S S

ADARTW solves the above problem as follows: If the "ponl

size" K is set equal to one, the procedure starts by first
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considering customer 1, the customer with the lowest EPT, Since
he is a vtype - D Customer, ADARTW schedules him/her in such a way
that his/her delivery time deviation is as small as possible

that is, zero. The resulting route and schedule are shown i;
Figure 6a and Table 8a respectively. MNote that there is a single
schedule block ("Block 1") in the schedule, which is pushed as

1 3 ) . .
ate in time as possible to achieve zero delivery time deviation

for customer 1. This necessitates a slack period of 3.59, during
which the vehicle idles at U. Uv to this iteration, Z O
h ] =
ADARTY
+1 2
+]
5
(a) o r
®
c 1]
K
-1
N
=2
-3 +3
(c i :
) . . Figure 6: Routes for (a) firse,

(b) second, and {c)
third iterations of

! ADARTW (see also
R Tables Ba, Bb, and B¢
: respectively}.

2 -1

JAELE 8s: Schedule st firss fterapion of ADARTW (#lso see
Fipure ha}

Arrival | Deparsure | 1d1s |Desirsd | Time Fide
Time L Tisg Time | Tims l Deviation 1.\5.-:
1 3.39 3.5% - - -
4.29 .29 o | - - -
5.71 iy = |- LN} 0 11.41
f 1 |
——

. ———— -

e —
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ADARTW next considers customer 2. The best insertion
results in a route and schedule shown ia Figure 6b and Table 8b
respectively. The schedule consists now of two blocks. Block 1
remains as before, that is, pushed as late in time as possible.
The new block (which includes the pickup and delivery of customer
2) is Block 2, which is pushed as early in time as possible, to

TABLE Bb: Schedule st second iteration of ADARﬂ_{Lf-hg_se_e

Figure i)

T Arrival | Departure |

Sco ~_IEE__%_JL#.

Q 0 ]

+2 0.71 0.71

b .12 3.78
| = 429 | a.29

-1 s -
e

achieve a zero pickup time deviation for customer 2 {who is of
type P). There is a residual slack of 1.17 between these two
blocks, representing the total amount of available idle time

inbetween. As before, and up to this iteration, Z 0.

ADARTW
Perhaps the most crucial observation at this peint is trhat
since the delivery of customer 2 already precedes the pickup of
customer 1, there is no way that this relative order can be
reversed in subsequent insertjons. In other words, we can
already see that it would be impossible for ADARTW to insert
customer 3 so that it would eventually produce the optimal route
and schedule of Figure 5 and Table 7. Still, the possibility of
obtaining an alternate optimal route and schedule cannot be ruled
out before all possible insertions of customer 3 are evaluated.
Unfortunately, there are not that many feasible insertions
for customer 3, even if insertion into two different schedule
blocks is attempted. Inserting both +3 and -3 into (including
before or after) Block 2 is infeasible, primarily because
customer 3's EPT is rather late (1.71) and because the slack

between Blocks 1 and 2 is rather tight (1.17). The same is true
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regarding an insertion into two different blocks. The only

possible insertion seems Lo be the one immediately after Block 1
{see Figure 6c and Table 8c). Such an insertion would entail a
pickup time deviation of 6 for customer 3, if the delivery time
deviation of customer 1 is to remain at zero. This proves that
for this example 2

ADARTW
not successful in identifying the optimal solution.

= 6 while ZOPT = 0, that is, ADARTV is

IABLE B:: Schedule at third {(aned final) fteration of ADARTW

{alsc see Figure be).

. Asrival Depa_uure Idle |Destred Time Ride
op Time Time Time Time Daviation | Time
0 4] ] 0 - ~ -
+1 0.71 0.71 o] 0.71 [} =
-2 1z | 329 Lar| . = 1.4 |
+1 W19 | &.29 o - - -
-1 5. i 57X u 5.T1 0 | 1.4l
! +3 1.71 7.71 | 7] 1.71 L] l -
| <3 | 8.71 | 2 = - = |1
| |

ADARTW fails to produce the optimal route and schedule in

this example for a number of reasons, due both te certain

features of the instance itself and to some features of the
algorithm. Regarding the instance itself, one could possibly
identify the combination of loose service guarantees (W = 6, MRT
= 4}, coupled with a mix of type-P and type-D customers as
conducive to the type of behavior displayed above. Regarding the
algorithm, it is clear that the fact that the "pocl size" K was
set equal to l, and the fact that ADARTW has no "resequencing”
capability ultimately forced the algorithm to insert customer 3
after Block 1.

It can be seen also rhat the above two features can cause
ADARTW to mistakenly declare a feasible problem instance as
infeasible. Indeed, it is easy to check that such would be the
outcome in the example examined if the width of the time window W
were equal to 4 instead of 6. In such a case, the optimal route

and schedule would remain unchanged, but ADARTW would be unable

— i

g
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to service customer 3 without an additional vehicle.

As a brief aside, one might wonder how would the GCR
algorithm perform on such a "perverse” instance. That would
depend, to a significant extent, on the values of the parameters
DT and CF of that procedure. It is straightforward to check that
if CF = L.5, and if time groups of DT = 2 are set up starting at
t = 0, the GCR algorithm would produce the optimal route and
schedule for this example. Of course, other choices in DT and CF
might make GCR fail to identify the optimal solution {an example
for this case is DT = 3, CF = 1.0).

This analysis has been to a certain extent unfair to
ADARTW, because the criterion that has been used {(worst-case
error ratio) is less than perfectly suited for this problem. One
could actually imagine even more extreme cases, such as a
) ,000-customer proplem in which ZOPT = O and in which ADARTW
achieves a zero time deviation for G99 customers and a time
deviation of | for one customer. It would be clearly nonsensical
to state that for this case ADARTW performs infinitely poorly.

In addition, the analysis is unfair because it refers to
pathological cases which are unlikely to occur in the real world.
Indeed, it is not uncommon for a heuristic whose worst-case
performance is poor to behave decently in practice; perhaps the
most typical example in this context is the k-interchange
heuristic of Lin and Kernighan (1973) for the TSP, which, in
spite of an arbitrarily poor worst-case behavior {Papadimitriou
and Steiglitz (1978)), is known to be one of the best heuristics
devised for the TSP to date. Qur real-world computational
experience with ADARTW, which has been very encouraging thus far,
rends to confirm the disparity between worst-case and
average-case behavior of the algorithm.

As far as the worst-case criterion used is concerned, we
note here that there is conaiderable room for further analysis if
ADARTW's performance is evaluated otherwise. Error ratics can

still be used if the objective funceion coeificients are
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restricted to certain values that would guarantee Z > 0. For
instance, an interesting question is what happens, in terms ol
worst-case performance, if the only nonzero coefficient is ¢
That is, the issue is what is ADARTW's worst-case performance in

terms of total vehicle active time (or, equivalently, total

vehicle distance traveled)}). The worst that could happen here
might be a case in which ADARTW is forced to use n vehicles for n
customers traveling from the same origin te the same destination,
whereas the optimal selution recommends only one vehicle for
these customers. Thus far, we have been unable to construct such
a pathological instance if the only nonzero coefficient is CS
Error ratios can also be used if they compare the heuristic

error to the maximum possible error rather thar the optimal value

of Z. A number of researchers (see for instance Fisher (1980))
have suggested the use of the ratio (ZH - ZOPT)/(Z -Z )in
lieu of the traditional error raric (2 -2 /2 ) for

o _ N H OPT OFT
minimization preoblems, where ZR is a suitably chosen reference
value. Tdeally, ZR should be the maximum value of Z.
Unfortunately, this maximun value is usually no easier to

identify than ZOPT' so ZR is instead taken to be some upper bound

on the maximum value of Z that is presumably easier to obtain.

In terms of the previous example (¢ = 1 and all others zero), it
can be seen that the maximum possible total time deviation is
equal to the time window width multiplied by the total number of
customers, that is, ZR = nW (in this case ZR = 18). If this is

the case, the sclution error Z = 6 seems quite

-2
ADARTW OPT
reasonable as compared to the maximum possible error ZR - ZOPT =
18.

A final direction in the worst-case analysis of ADARTW is

to abandon the use of erxor ratios altogether and focus on

absolute errors instead (that is, use Z - 2
ADARTW apPT
criterion). The presence of hard constraints implies that upper

as the error

bounds on the total customer deviation from desired {pickup or

delivery) time, on the total excess ride time, and on the total

'-i-.- D il SR R e Sl o e
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n
vehicle active time are equal to nW, L (MRT - DRTi) and
n

t (D(depot, +i) + MRT ) respectivel%flif no customers are Lo be
}Eﬁected. However, the;e bounds are likely to be loose because
they fail to take into account the nature of the algorithm and
other problem inputs (such as vehicle capacity). Whether these
{and possibly other) bounds can be tightened by exploiting the

special structure of the problem and the algorithm remains to be

s5een.

5. CONCLUDING REMARKS

This paper has reviewed two heuristic algorithms developed
by the author and his colleagues for the multi-vehicle
advance-request Dial-A-Ride problem, and has summarized
computational experience with the procedures to date. Both
algorithms seem to be quite efficient computationally, and have
solved the largest (toc our knowledge) instances in this problem
class to date. On the basis of this computaticnal experience, we
feel that both procedures can be useful in the implementation of

an advance-request Dial-A-Ride system. We feel the GCR algorithm

can be best used as_a fast planning tool and/or as a device to

produce good starting solutions in an operational situation,
whereas the ADARTW algorithm can form the basis of an operational

scheduling system thar would assist the dispatcher in the actual

execution of the schedule. Of course, additional refinements in
both procedures, and continuing computational experience with
them are necessary to both shed more light on their performance,
and, ultimately, enhance that performance even more.

We end this paper by discussing several important issues on
the scenarios under which the procedures of the paper are likely

to be implemented.
We mentioned earlier that the jssue of whether customer

service puarantees {or, the corresponding time constraings)

should be "hard" or “soft” in an advance-request environment 35 8

debatable one. The "hard" appreoach is certainly more appealing

o s ———— e ———

e —— . B i e
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from a policy (or even a public relations) standpoint, plus,
lends itself more easily to analysis by quantitative techniques.
In addition, there are certainly cases in which a customer has to
be picked up (or delivered) within a prescribed time window.
However, the "hard" approach also has some drawbacks: First, it
opens the door to "infeasible solutions" or to solutions which
are erroneously declared as infeasible (as seen in Secrioen 4y,
How would a dispatcher handle an "infeasible solurion” in
practice? Rejecting customers may not be an allowable
alrernative. Similarly, adding more vehicles to make the problem
feasible may be far less implementable an option than the
discussion thus far would seem to suggest. This is certainly

true in a "mixed" demand scenario where the dispatcher might

simply be unable to add vehicles upon request. Thus, it may
happen that in such situations the best alternative for the
dispatcher would be to make the solution feasible by relaxing the
constraints, This could possibly involve rerunning the
algorithm, and/or calling some or all of the customers to
renegotiate new service parameters. Leaving aside for the moment
the fact that a "hard" constraint that is subsequently relaxed
is, by definition, "soft", one can also see that there are a
muititude of other public perception problems that could occur
under these {or similar) circumstances. This is particularly
true if the (supposedly "hard") constraints under which the
algorithm operares have been advertised as such in public,

Extending an advance-request dial-a-ride alporithm inte the

equivalent "mixed" demand case is a well-motivated task, since

pure advance-request systems are either nonexistent or Very rare.
Such an extension would be much more difficult to implement in
the GCR algorithm than in ADARTW. Indeed, the design of ADARTY
would make the real-time insertion of immediate-request customers
into an advance-request schedule obtained (say) the previous day,
seem "straightforward”. In fact, certain facets of the insertior

problem become easier for immediate-request customers {for
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instance, schedules can no longer be shifted earlier in time upon
appearance of an immediate request, and that would alleviate some
of the computational burden of the procedure). However, as
alluded to above, there are a number of issues that merit seriocus
attention before such an extension is implemented. Given that it
might be very difficult, or even impossible, to add new vehicles
s0 as to make the problem feasible sach time an immediate request
appears, one would likely have to adept a ditferent system of
service guarantees for real-time requests. In fact, it is
exactly because of such issues that Rufbus policy makers decided
to consider time constraints as "soft" rather than "hard" (see
the description in Section 3.3). Short of scrapping the idea of
"hard" time constraints altogether, it might make sense to use it
for advance-request customers only, and adopt softer service
guarantees for real-time customers,

Finally, there are a number of other ideas that can be
implemented to further enhance ADARTW. For instance, one could
easily modify the algorithm to account for nonzerc dwell times,

or for specialized vebicles (for special categories of customers
such as wheelchair customers, etc.)., One could also easily add a

post-optimization module such as k-interchange to provide a
"resequencing” capability to the algorithm, or even a capability
to "swap" customers among vehicles. Whether the last two
measures would substantially enhance the performance of ADARTW is

an open question at this point.
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